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1. INTRODUCTION 

Classical initial value problems of systems of first-order ordinary differential 

equations are designed to solve 

y'=f(t.y);   y(0)=yo. (l.l) 

Conventional methods such as Runge-Kutta and linear multiStep (LMS) methods 

have been very well developed (Henrici [16]) and have been demonstrated effective 

for solving (1.1) when df 
ay 

af 
ay 

large,  prohibi- is small.   Frequently, for 

tively small step size values (h) are required for accuracy; then,  conventional 

methods seem impractical.   To overcome this difficulty, we choose to write (1.1) 

in the following way: 

y'= Ay + g(t.y):   y(0) = yo. (*.*)' 

where f (t,y) may be written as Ay + g(t.y) and A is either a constant matrix or 

a function of t.   In the case where Re{x(A)} < 0 and X(A),  the eigenvalues of A, 

differ greatly in magnitude and g(t,y) is a slowly varying function in t,  equation 

(1.1)' is called a "stiff" equation.   These stiff equations frequently occur in the 

applications to chemical kinetics, reactor calculations, missile guidance, etc. 

The search for effective schemes to solve stiff equations began over two 

decades ago and still goes on.   Curtiss & Hirshfelder [9] encountered the stiff 

phenomenon in their study of chemical kinetics and proposed low-order multistep 

formulas to integrate scalar stiff equations. Cohen [8], in solving reactor kinetics 

equations, presented a generalization of Runge-Kutta methods.   Certaine [7] 

demonstrated that if conventional schemes, such as trapezoidal rule, were used to 

solve (1.1)', then two problems were encountered — step size and accuracy. 

Certaine then proposed a method to handle scalar stiff equations that have short 
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time constants.   Dahlquist [10] discussed a general treatment of the stability of 

linear multistep methods and investigated the special stability problem in connec- 

tion with stiff equations.   Dahlquist introduced an important concept, A-stability, 

and proved that there do not exist A-stable methods among linear multistep methods 

of order higher than 2.   Widlund [32] and Gear [14] relaxed the A-stability con- 

cept in an attempt to create higher order multistep formulas suitable for stiff equa- 

tions.   Widlund [32] defined A (a)-stability and showed that there exist K-step 

methods of order K which are A(a)-stable for any a < *72 and K < 4. Gear [14] 

weakened the A-stability concept, defined stiff-stability, and derived stiffly stable 

methods of order <6.   Gear [14] designed a computer program to peiiorm such 

calculations. Stiffly stable methods of orders 7 and 8 have been found by Dill (1969) 

and of order up to 11 by Jain (1970), but no tests have been made on their algo- 

rithms.   Lawson [24] generalized the Runge-Kutta method, Norsett [28] general- 

ized the Adams-Bashforth methods, and Bjurel [3] modified linear multistep 

methods.   Contributions also have been made by Miranker [27] and Guderley 

et al. [is], who designed stiff methods to solve special types of stiff equations. 

The theory for stiff systems lacks a cohesiveness that this thesis attempts 

to achieve by providing: 

(1) A complete formulation of nonlinear multistep (NLMS) methods, which 

is demonstrated to be a generalization of linear multistep methods both 

in technique and in theory. 

(2) A full development and proof of the theory of NLMS methods with 

regard to stability, consistency, and convergence. 

\ 



(3) A proof that NLMS methods accommodate A-stability in the sense of 

Dahlquist [10]. 

(4) A study of the effect of the error function Cn+1 (as defined in section 

4, Computational Considerations) by means of a perturbation of the 

characteristic roots. The study shows that LMS methods of order p that 

possess the smallest error Cp+i are only weakly stable.   However, 

it will be indicated that there always exists a NLMS family possessing 

the smallest error C    , • 
p+1 

(5) Extensive tests of NLMS methods applied to a set of selected scalars 

and systems of stiff equations.   Results are compared with Adams' 

methods [16], Gear's program [14], Seinfeld's paper [29] and Ehle's 

research report [ll], and it is shown that NLMS has definite advan- 

tages over the above techniques. 

(6) A section of conclusions and a summary of remaining problems with 

some suggested solutions. 

(7) A listing of computer programs used to implement the NLMS methods. 

\ 



2. PRELIMINARY CONSIDERATIONS 

In this section, we define the problems under consideration and state the 

theory in relation to the existence and uniqueness of the solutions of approximating 

difference equations; the proofs for the existence and uniqueness theorem can be 

found Li references [16] and [18].   The starting procedure involves the use of 

initial data; the solution of the difference equations depends continuously on the 

initial data.   The order of the mulüstep methods will be defined as they are dis- 

cussed and developed in section 3, Theory. 

2.1.      Problems Considered 

In this paper, we consider the initial value problems of a system of first- 

order ordinary differential equations of the form- 

y1 ■ Ay + g(tiy) 

= f(t,y) ;  y(0) = yo (2.1) 

in the region R,  defined by 0 = a < t < b < «>;   || y || < « .   A is either a constant 

matrix or a function of t; consequently, a portion of the theory will be restricted 

to the important case, where the differential equations are stiff, i. e., Re{\(A)} < 0. 

Among the numerical test examples,   A is chosen to be a constant matrix and 

Re{x(A)} < 0.   The function g(t,y) C C1^1 (p > 0) satisfies the Lipschitz condition, 

||8(t.y*) -g(t.y)|| < L||y* -y||. (2.2) 

For the most interesting applications (those restricting the step size to conven- 

tional methods) p(A) » L, where p(A) is the spectral radius of A. 



2. 2       Existence and Uniqueness Theorem 

We assume that our initial value problems satisfy the conditions required 

by the existence and uniqueness theorem. We state the existence and uniqueness 

theorem expressed with respect to f (t,y) as follows: 

Theorem 2.2;  (Existence and Uniqueness Theorem) 

We assume that f (t,y) satisfies the following two conditions: 

(1) f (t,y) is continuous in R, where R is the region 

0-a<t<b<oo,|jy|| <oo. 

(2) 3 a Lipschitz constant L* ) for arbitrary t C[a,b] and any two 

vectors y and y*, the following condition is satisfied: 

||f(t.y*)-f(t.y)||lL*||y*-y||. (2.3) 

Then, for any given initial vector y0 ,   3 one and only one y(t) 9 

(1) y(t) is continuous and continuously different!able for tC[a,b] 

(2) y'(t)=f(t.y).   tc[a.b] 

(3) y(a) = y0. 

To Ltc differential equations (i. 1), we adjoin appropriate relations, called 

initial conditions, that serve to define a "meaningful problem. " If the solution of 

(1.1) satisfies appropriate initial conditions of smoothness, the problem (1.1) is 

termed well posed in the sense of Hadamard (Isaacson [20]), and the problem has 

a bounded, unique solution.   Hochstadt [I8j proved that the solution of the differ- 

entirJ equation depends continuously on the initial data.   This then fulfills the 

Hadamard well-posed statement.   It ought to be pointed out that even though 

Hadamard's well-posed criterion is fulfilled, conventional techniques fail where 



there is a very large Lipschitz constant.   This is the area where we need to con- 

sider nonlinear multistep methods. 

2.3.      Norms 

In a finite n-dimensional vector space, we define the p-norm of a vector 

to be 

n xl/p 

'p-S1^ 
and 

n 
lx" 

*-       .t\1/2 

llxIL=pliS1J'xllp=Tl,xj, 

For a matrix A of order n, we denote 

X (A)  as the eigenvalues of A and 

p (A) as the spectral radius of A . 

The different norms of A  take the following definitions: 

1/2 
llAll^MA^A)]' 

HAH, =   max   £ |a  | 

1li£n j=i 

n 
iA.i    =   max   X) I'j 



Let II • II.  indicate one norm and let || • IIR indicate another norm.   Then 

II * IIA and  II a II3 are said to be equivalent if 3  two positive numbers a and b ? 

a||.||A<|MIB<b|M|A. 

We know that in a finite-dimensional space, all norms are equivalent; therefore, the 

norms used in this paper do not refer to any specific norm.   However, in the Pade 

approximation, we use the column norm  || • {L ; in the Ehle's test examples, we use 

II • ||2; and in the other test examples, we use   II • 11^,.   In the lemmas and theorems 

where the norm does not have a subscript we mean any norm. 



3. THEORY 

This section develops the full theory that provides the basis for NLMS 

methods, including the development of the important notions of Stability and Con- 

sistency.   The formulation of NLMS methods, which assures consistency and is 

closely connected with the theory, is also described in this section. 

NLMS methods are demonstrated to be a generalization of LMS methods. 

The general formula is described by (3.5),  and the formulation is expressed by 

(3.36).   Both explicit and implicit schemes are given in matrix expressions up to 

an order of 3.   The application of NLMS methods for the solution of stiff ordinary 

differential equations leads naturally to the selection of strongly stable methods. 

The theorem on convergence (Theorem 3. 7), which follows for such strongly 

stable and consistent NLMS integrators, is also presented in this section. Three 

lemmas needed to prove the convergence theorem are developed.   Some of these 

proofs are a modification and extension of the proofs used by Henrici [17] for LMS 

methods.   The theorem of A-stability is also presented in this section. 

3.1.     Nonlinear Multistep (NLMS) Algorithm 

For convenience, assume A to be a nonsingular, constant matrix.   Equa- 

tion (1.1)' can be written as 

5 (e"Aty) = e"Atg(t,y);   y(0) = yo. (3.1) 

Then, integration of the above equation over the interval [^, t^+j] gives 

V 
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If e-Atg(tfy) is a slowly varying function, a simple change of variable allows 

successful integration by conventional methods.   For g(t,y) slowly varying and 

Re{X(A)} < 0, p(A) "> 11  conventional methods require a prohibitively small 

step size,which we overcome by NLMS methods. Our method of attack is to express 

g(t,y) as a low-order polynomial in t by retaining the first few terms of the Taylor 

series of g(t,y) expanded about ta.   The complete derivation of this idea is 

properly described in section 3.3, Consistency.   When g(t,y) =0, equation (1.1)' 

becomes homogeneous, i. e., 

y'=Ay;   y(0)=yo. (3.3) 

Without loss of generality, we consider a = IQ = 0.   The solution of (3.3) is 

y(t) = e**' y(0).   Consequently, 

..     .      iAh 
y<W=e   y(tn>' 

which is the rigorous solution in the absence of round-off errors, where i = 0,1,2, 

... ,  an inteee^ index, and h = t^+j^ - tjj. 

The linear multi-K-step methods take the general form 

E-i/n+i^Z^n+i« (3.4) 
i=0 i=0 

where  a.. / 0 and |a0| + \ß0\ > 0 , 

If 

K 

0K=O 

^^0 K 

explicit 
,  the method is 

[ implicit 

The generalization of (3.4) leads to 

K 

i=0 

Ah(K-i) 
y„+i " h E *KiW fln+i ' 

i=0 i e 'n+i    " hi TKi 
(3.5) 

X 
*' 
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where aK ^ 0 and  joj + |A(<t>Ko(Ah))|  > 0. 

explicit 1 
If 

<l>KK(Ah)-0 

♦KK(Ah)^0 
,  the method is 

implicit) 

Without loss of generality, we assume aK = 1 for computational convenience. The 

coefficients of yn+i, gn+i depend upon (Ah).   We note that we need K starting 

values to proceed. 

3.1.1. Starting Procedure 

A convergent K-step method will produce a uniquely determined sequence 

y , y y    for an arbitrary set of starting vectors S  , S., ... , SK_1 •   In 

practice, we obtain the starting procedure by setting the starting vectors equal to 

the given initial vector and calculating the subsequent (K-l) vectors.   These 

starting vectors are required to be bounded in order to meet the stability criterion. 

We have already shown that if the differential equation satisfies certain require- 

ments, the solutions of the difference equation depend continuously on the initial 

data.   Thus, a unique solution exists and the numerical solution approaches the 

exact solution. 

3.2.     Stability 

If a bounded starting procedure yields a uniformly bounded solution of the 

approximating difference equation to the differential equation (1.1) as h-»0, we 

say that the method is stable.   We can also describe a stable method as follows: 

Let S„, S., ... , ST, , denote the K initial vectors 9 

||S.(h)|| < M, a constant. 

\ 
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Let 

y.   =5.0»);     i = 0,1,2....   ,K-1   . 

Then  ]  a constant M',  independent of h, 9 

The stability is determined by the root condition, i. e., the modulus of the roots of 

every characteristic polynomial must not exceed 1 and the roots of modulus 1 

must be simple.   (The characteristic polynomial is discussed in this section.) We 

now proceed to develop the theory with regard to the concept of stability. 

If equation (1.1)' is homogeneous, i. e., g(t,y) =0.  we expect that the 

values y (tjj) can be found exactly in the absence of round-off error.   If (3.5) is to 

hold when 

then substituting (3.6) into (3.5) gives 

V^        Ah(K-i)     iAh    Ä .        AhK    .. . V^ n n 
2^ a   e '   e       y(t )    =e y(tn) ^ V t3-7) 
i=0 n n   i=0    ' 

K 
For y^) /0 and (3.7) to be zero, we discover that 57 "i must be 0' Thisisiden- 

i=0 
tical to the necessary condition for LMS methods to be consistent.   The char- 

acteristic polynomial, following Henrici [16] and Dahlquist [lOj, for LMS methods is 

expressed by K . 

p(r)=X!aif- (3-8) 

i=0 

Polynomial p(f) is said to satisfy the "root condition" if K roots ^ satisfy 

|f11 < 1 and if the roots satisfying   jfj] =1 have multiplicity 1.   Later in this 

section, we show that the characteristic polynomial of NLMS methods generalizes 

\ 



V-        Ah^-iKAh   i      AhK v>      A      AhK   .„. 
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the characteristic polynomial of LMS methods and that our particular choice of 

NLMS methods obeys the root condition.   We will explore the necessary condition 

of stability later in this section and the sufficient condition of stability in section 

3.6.3.   Since 1 is a simple root of the characteristic polynomial, we have 

K 
"(1)= £ «,-0. (3-9) 

i=0 

which is imposed as one of the conditions of consistency for LMS methods. 

Formula (3.7) can be written as 

V^        AhOC-iKAh   i      AhK v 
L ai e <e     v =e        2- 
i=0 i=0 

If all K roots satisfy the root condition, p(r) must be equal to 0,   Then 

V-        Ah(K-i). Ah .i    . 2^ a e '(e     f)  =0. 
i=0 

Since a matrix annihilates its characteristic polynomial, its eigenvalues must 

also annihilate the same polynomial.   Thus the above formula can be written as 

i=0 i=0 

Equation (3.10) is a set of n equations for the components of ex"K f .   Each equa- 
K 

tion is a characteristic polynomial of the form   2^ a^1 = 0, where ^ , which 

XihK i=0 

stands for ^. = e        f i f  is the com^ >nent of the j-th characteristic polynomial 

811(1 ^-i»   t* «»••• t I« -.  are K roots of the j-th characteristic polynomial 

p(X, f) with X = Xj(A).   Thus, we have 

P (X. 1) - E .t(.
XbK) = eXhK f „i = eXhK p(l) = 0. (3.11) 

i=0 i=0 
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This is a condition of consistency for LMS methods.   Note that (3.10) generalizes 

(3. 8) and (3.11) generalizes (3, 9).   Equation (3.10) is defined as the characteristic 

polynomial for NLMS methods,and (3.11) is a necessary condition of consistency 

for NLMS methods. 

Let us use test problem 3 (from section 5, Numerical Comparisons) as an 

example to show that the root condition is a necessary condition for stability. Con- 

sider the problem 

/-I     95\ 
ly:   y(0): 

\-l    -97/ \1, 

Using the nonlinear multi-2-step method with a0 = 4,   a^ = -5, and 02 = 1,  we 

obtain 

.   2Ah Ah A 
4e      yn-5e    yn+l

+yn+2=0' 

with the initial values 
T 

y   =(.5791054, -.60958467E-02)T 

and the step size, h, = . 625.   Our NLMS characteristic polynomial is 

„      .   2Xh     c   2Xh 2Xh   2 
p(X,f)=4e       -5e       f + e       f 

= 0=e2Xh(f-l)(f-4), 

which has two simple roots, 1 and 4. Obviously, this violates the root condition. As 

we proceed to solve this problem numerically, we can see, from the computer results 

shown below, that the divergence becomes evident after 7 steps. The first column of 

the results is the iteration index, and the second column is the current t values. The 

last two columns show the calculated numerical values of two arguments, indicated 

by A. The two values below the arguments are exact solution values, indicated by T. 

\ 
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1 .12300000+01 .16589938+00 -.17163091-02 A 
.löSgiö^OO -.17161893-02 T 

2 ,18790000+01 .«♦7500161-01 
,•♦7535869-01 

-.00006791-03 A 
-.00037757-03 T 

3 .25000000+01 ,13581331*-01 
,13619255-01 

-.11296139-03 A 
-.11336057-03 T 

i* .^1290000+01 .38569111-02 
.39019817-02 

-.10599063-01 A 
-.11073192-01 T 

5 ,37b00000+01 .10657062-02 
.11179365-02 

-.11217958-01 A 
-.11767753-01 T 

b ,»♦3750000+01 ,«£6023676-03 
.32029117-03 

-,27393339-05 A 
-.33715176-05 T 

7 ,00000000+01 .22870181-01 
.91765811-01 

-.21073868-06 A 
-.96595595-06 T 

8 .36230000+01 -.t>268bfa05-01 
.26291316-01 

.55161891-06 A 
-.27675101-06 T 

9 ,02500000+01 -.82990288-01 
,75325968-05 

.87358188-06 A 
-.79290192-07 T 

10 ,08700000+01 -.10158861-03 
.21581251-05 

.10693539-05 A 
-.22717106-07 T 

11 ,75000000+01 -.11826226-03 
,01831319-06 

.12150763-05 A 
-.05085600-08 T 

12 ,01210000+01 -.13609010-03 
,l77m970-06 

.11325272-05 A 
-.18647337-na T 

13 ,87500000+01 -.15611957-03 
.50751238-07 

,16133637-05 A 
-,53125511-09 T 

m ,93750000+01 -.l789b583-03 
,ll5li333-07 

.18838506-05 A 
-.15306666-09 T 

15 ,10000000+02 -.20511781-03 
.•♦1661615-08 

.21591319-05 A 
-.«♦3851332-10 T 

16 ,10615000+02 -.23508066-03 
.11936253-08 

.^1745329-05 A 
-.12561177-10 T 

17 .11250000+02 -.26911721-03 
,^1197936-09 

.^8359707-05 A 
-.35997828-11 T 
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The nonlinear multi-2-step method used to solve problem 3 is stable be- 

cause we chose a0 = 0,   "i = -1, and or« = 1»   so that the characteristic polynomial 

has two distinct roots, 0 and 1.   Hence, the root condition is satisfied,  and the 

method is stable.   Thus, we have shown that the root condition is a necessary con- 

dition for stability.   We defer the proof of the sufficient condition to lemma 3. 6.3. 

Thus, the stability for NLMS methods is a direct generalization of the stability of 

IMS methods (Henrici [16]). 

3.2.1. Strong Stability 

A particularly advantageous feature of NLMS methods is that the strong 

stability condition result! when Re | X(A) | < 0.   Since stiff differential equations 

frequently occur when Re | X (A) \ < 0 with   p (A) » 1,   it is most important that 

the parasitic growth of the extraneous solution of the difference equations be damped 

out.   To ensure this, the NLMS methods are selected to be strongly stable.    This 

is not a restriction of NLMS methods since the methods are also applicable when 

Re |X(A) [ > 0; in this case, the error growth is appraised by the estimate fur- 

nished by lemma 3. 6.3. 

A measure of the growth of LMS methods is provided by examining the solu- 

tion of the homogeneous,constant coefficient difference equation.    Consider the 

homogeneous equation of LMS methods, 

We recall that strongly stable solutions of the LMS methods occur when 

K 

i=0 



IG 

pit) 
Pl(f)=  f-1 haSr00tS   ^2'   ^3'•••'   ^K' 

where 

\h\' Ifsl  W*1- 

The corresponding homogeneous equation of NLMS methods is 

K 
„   eAh(K-i) 

i #n+i *       ' 

Since 

let 

e^-^O. 

eAh(K-i) w 

'n+i        n+i 

Then (3.13) becomes 

S-iW^-O. (3.14) 
i=0 

Equation (3.14), of course, has precisely the same constant coefficients as the 

linear difference equations of order K.   In fact, 

Ah(K-i) 
w   . = e     '        y   . n+i 'n+i 

Ah(K-i) , Ah „ . i 

AhK   i. 
-e s.»      j — ■».,*,..., ä , 

Strongly stable solutions will result for 

X(A)hK 
<1. 

Note that these extraneous solutions damp out extremely fast since Re | x(A) | < 0. 

Therefore, we see that strong stability implies that ||e    ^K" ' y     || is uniformly 
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bounded.   For A = 0, 
Ah(K-i) 

reduces to iiy   .11,  which means that 

j y      11  is uniformly bounded; this is the stability definition for LMS methods. 

3.2.2. A-Stability 

Another advantageous feature of NLMS methods is that when they are used 

to solve stiff equations,they are A-stable.   Dahlquist [10] defined a method to be 

A-stable if the numerical solution   || y   || "• 0   asymptotically as  n -► «   for 

the differential equation y' =Ay where Re | X(A)| < 0.   If A-stable methods of 

order higher than 2 exist, they do not belong to the linear multistep family since 

it has been proved by Dahlquist [10] that an LMS method of order higher than 2 

cannot be A-stable.   However, since A-stability is a desirable property when solv- 

ing stiff equations, it is preferable that it be retained in NLMS methods.    We will 

introduce a theorem which shows that NLMS methods accommodate the A-stability 

in the sense of Dahlquist. 

Matrix Exponential 

We begin by discussing the computation of a matrix exponential,  e**.   If A 

is a scalar, there is no difficulty in computing e**.   if A is a stable matrix 

(Young [33]), i. e., Re |x(A)[ < 0,  then the rational Pade approximation is also 

stable (Varga [31] and Lawson [24]), as shown by the following lemma. 

Lemma 3. 2. 2.   (Pade Lemma) 

Ah 
Denote the Pade approximation to e       by Pade (Ah),   Then for 

Re j x(A)| < 0, the Pade (Ah) is stable, i. e.,   p (Pade (Ah)) < 1. 
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The Fade approximation to a matrix exponential,  e^,  has many different 

expressions, which can be found in references [5] and [31],   lu our present test 

computations following Blue [5],  we use 

i«2.2(*)-*-[*-f^]'l[xtf+#] 

for Re |\(A)| < 0.   Where x is a real scalar <0,  e* can be calculated directly 

from an accurate exponential routine.   The Pade approximation is applied with the 

requirement that p (Ah) < 1 when Re | X (A)} < 0.   The Pade approximation to e 

using a polynomial of degree n in the numerator and m in the denominator has an 

error 0(hn+m+l) as h -♦ 0 (Varga [31]).   If p(Ah) is not < 1, the accuracy can be 

ensured by the identity e***1 = (e2     '**1 )2   . 

Theorem 3.2.2.   (A-Stability Theorem) 

When used to solve stiff equations, NLMS methods accommodate the 

A-stability tu the sense of Dahlquist. 

Proof; In the Dahlquist sense, when applying NLMS methods to the problem 

y'=Ay,  which implies g(t,y) = Oi  NLMS methods produce the approximate 

At« nAh 
solution to the problem:  y  - e       y=e        y.   Since the Pade (nA'i) is 

stable, the   lim 11 y lUo» ^lUB establishing the A-stability. 
n-*oo "'nil 

We note in passing that the solution to this problem is the principal reason 

for NLMS methods to be of interest.   The NLMS methods solve this pioblem rigor- 

ously for every constant matrix A in the absence of round-off error. 

■ 
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3.3       Consistency 

This section deals with the development of the theory of consistency in re- 

lation to NLMS methods.   Later in this section, we show that NLMS methods are 

consistent and demonstrate that our consistency is a generalization of the consist- 

ency of LMS methods.   An immediate need is to define what we mean by consistency. 

A method of (3.5) is saK to be consistent if 

K AV./V i\ K 
max  11 y^ «   e     *      ' y    , - h 7     4>      (Ah) a     ., 

n        f-^   i 7n+i        4-' YKi v     ' "n+i 1=0 i=0 

is small as h -► 0.   We shall show that the conttstency we will develop for NLMS 

methods actually satisfies our definition. 

Problem (1.1)' can be written as (3.1), which is 

d . -At   .       -At _ 
^"(e      y) = e      8(t.y);    y(0)-yo- 

Int^ration of the above system over the interval ft  , t   .1 gives 1 n     n+i 

/<«„.!>-,Ahy<y + i^i''A(Wt,,^»<'••y>dt■■ 
n 

-At which is our equation (3.2).   If e       fl(t,y) is a slowly varying function,     simple 

change of variable, i, e., 

i = e-Aty. 

allows successful integration by conventional methods such as the Runge-Kutta or 

LMS methods.   Lawson [24] used this idea.   For 9(t,y) slowly varying, 
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Re JX(A)[ < 0, and p(A) » 1,   conventional methods require a prohibitively 

small step size, which we overcome by NLMS methods.   The method of attack is 

to express g(t,y) as a low-order polynomial in t,   e.g., by retaining the first 

few terms of the Taylor series of g(t,y) expanded about t .  For the moment, let 

us introduce the NLMS operator,oCN[y(t); h].   (The construction of such an oper- 

ator is described in section 3.4, Nonlinear Operator.) 

Write 

^[yw^]= Z «,«^^ y(t+ih)" h E ♦Ki(Ah)9(t+ih'y)'      (s-15) 
" i=0 i=0    n 

and introduce the true operator, 

Jfry^]= di: - Ay - «w=0 • <3-15>' 

For g(t,y) C Cp+1,  we evaluate the local discretization error as follows: 

Tly^hl^ly^hj-jftyW] 

= E «i eAh(K"i) y (t + ih) - h V 4,Ki (Ah) g (t + ih, y) 

-{^"Ay"9(t'y)}- p-18) 

The terms inside {   } of (3.16) vanish because of (3.15)*.   If we expand g (c,y) in 

a Taylor series expansion around t , we get 

9(t.y)=Lo—ji—(fVJ 

^     j!    (t v     (P+i)!    ^-y 

(t-t)p+1 

+ eG   , (t-t)—2  . (3.17) 
P+1        n    (p+l)! 

■ 
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■ 

In the above, 

Gr*-i(t" V =   may    " S(p: ^ (t' yW) - g05"^ (t . y (t)) II 
^ t-t CKh 

n 

is the modulus of continuity when g(t,y) satisfies the Lipschitz condition only, 

0 < Ö < 1,  and p + 1 = 0. 

By substituting (3.17) into (3.2), we get 

*    .     iAh   _    f    rVi  -ACt'-t^g^yy^)) 
yW=e   yV + T. {   e        —ji—(t - V dt, 

n 

t   .    -A(t'-t   ,) (t'-t)^1 

n 

Define 
t       -A(f-t ^) 

:J(Ah)= J 
1 t 

n+ie n+i(t'-tn)jdf. (3.19) 

Expanding g(t + ih,y) at t = t    and neglecting the terms modulo (p+1), we get 
n 

g(t + ih,y)=   ^^flö)(t.y). (3.20) 

By substituting (3.18^ and (3.20) into (3.16) and using definition (3.19), we get 

r   mm     >r        ^(K-1)   iAh   /. w'fiv        AhfK-Df1!^ 
T[y(t);h] = Laie       e   y<tn> + LLaie       rirn 

i=0 J=ö '1=0 

,P+1 

•(^'(«„.yV^G^ct-V)] . (3.2i) 
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Now, let us look at the last term of (3.21).   For g(t, y(t)) c(/   •  ^e class of 

K 

i=0 

Ah(K-i) r^r1 <Ah>" K 

<Vy(,„» + l'Gptl<t-tn»||ig  I'll 

polynomials of order p,  the last term vanishes.   For g(t, y(t)) C C      , the last 

term will be O (h     ); this is followed by examining the bound for the last term. 

The bound is given by 

P4l 

W (p+1) 
     (ayv    ' tt . Mit \\ + at* 

p+1 

•lle*^-"!^ (I^Vy^lHO^^Dh^-O^V (3.22, 

As h — 0, this bound vanishes. 

For arbitrary g(t ,y),  we select |     \ of (3.21) tobe zero,  so that 

lim T[y(t);h] = 0 •   This defines consistency for NLMS operators and shows that 
h-»0 
the NLMS operator is consistent with the true operator in the sense of Keller [22]. 

Since the true operator is 0 > then the lim T[y (t);h] =0 is equivalent to 
h-0 

lim max 
h-0   n 

K £-, i=0 

Ah(K-i) 
K 

yn+i-
bI>Ki<Ah)9 

i=0 Ki' 'n+i 
= 0, 

which is our definition of consistency.   The selection jf {     } of (3.21) to be 0 

enables us to determine ^    (Ah) and guarantees the consistency, so that a formal 
Ki 

analogy with LMS methods results.   Thus, we see that our NLMS methods are a 

generalization of LMS methods. 

. 
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3.4      Nonlinear Operator •i^iY®*] 
Since we have now establislmd the consistency, let us define 

Q,.    Aj+1l?(Ah)     -J+J.    t       -Aft'-t    ) 
^- =ii-i.Är-|

n+ie n+i)(t.-t)jdt.. 
i j! i!      t x       n' 

For j = 0,1, we get 

^■M Vi   '^'"W ^      iAh    T e dt' = e       -1 

n 

rt        -A(t'-t   ,) f «4-i "' nJj' 
NK = A     J        e (t'-t)dt'=(e       -1) - iAh. 

By induction, we get 

(lm+1 Clm    (iAh)m+1 

^i       ^i   " (m + 1)!     ' 

O  j      iAh     ^  fiAh)i 
>re   -LTT"- (3-23) 

K K 

dtN[y(t)^] =E ai •Ah<K'l) Yi -h E ♦Ki^ «I •       (3-24) 

then 

(iAh)-ö 

We already have associated the nonlinear operator with the nonlinear multi- 

step formula by (3.15).   Take n = 0; then 

i=0 i=0 

If we use formula (3.18) for y   and formula (3.20) for g     (letting p ->«) and 

formula (3.23), and substitute them into (3.24), we get 

f:ate
Ah<K-1)e1Abyj+C(h)9 + C1(h)9' + ... + C(h)g<<1> + .... 

""   ' ' (3.25) 

■ 
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Note that because of the root condition, |     | of (3.25) -»Q •   Thus, 

m=0 

where 

E i=0 " -   *-    -      i=0 

(3.26) 

v-        AhOC-i)   Ii(Ah) ^(Ih)"1 

CjCh)   ga, e^ l> [-L—J - hg ^- ^(Ah),    J - 0.1. (3.27) 

We define the order p of NLMS methods to mean that 

C0(h) = ^(h) = ... = Cp(h) =0 but Cp+1 ^ 0 . 

At this point, let us distinguish the orders between LMS and NLMS, i. e., 

PLMS and PNLMS*   When A = 0 •  ^ is imPlied ti^ S(t.y) = f (t,y) = y'.   Then 

(3.25) becomes 

.0) 
K 

i=0    7        j=0     J 

\i=o   V      j=o   J 

K no 

£«.)*♦£ i=0   7       H 

=(£ ai) y+ co(0) y'+ ci(0) yM + • • •+ cq<0) y(q+1) + • • • • 

a) 

Cj(0)yo+1> 

K 

E 

If we reindex the coefficients of yu/, we get exactly the coefficients of the LMS 

operator; this confirms that NLMS methods are a generalization of the LMS methods 

since LMS is a special operator of NLMS.   When A ^ 0 ,  the two p's are not com- 

patible since, in this case, the solution depends or> an exponential times a poly- 

nomial of order pNLMS. Then we have p^^ = pLMS - 1. 

x 
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\ 

3.5       Formulation 

3. 5.1   General Formula 

By our selection, we set {    ) of (3.21) = 0 for j = 0,1, ... , p to give 

p-th-order methods 9 

f    Ah(K-i)fi!<A1"l „fm^ ,AM „ (3.28) 

The above equation expresses a K-step, p-th-order method that consists of a sys- 

tem of p + 1 equations.   The choice of K and p will determine whether this system 

has a unique solution, has many solutions, or has no solution.   We make a choice 

9 p = K, which ensures the existence of inverses of K and H .   Thus, we can 

determine &,„ (Ah) based on the choice of «.'s, which can be written as YKi i 

t "ie ^ L—irH"   u   E ' ♦Ki<Ah> •   Pi 29) 
i=0 l- J J •'■1=0 

Substituting (3.23) into (3.29), we get 

£       Ah(K-i) f iAh     ^ {mn   (Ah)i+1 Ä   j A      .M 

Because of the root condition, (3.30) becomes 

£       Ah(K-i) v* (iAh)^       (Ah)i+1 V   ^ A    /AM n ^n 
1=6 JFO J

"       i=0 

If we multiply both sides of (3.30) by (Ah)'^ and let || A || - 0, we get 

K J+l K   J 

i=0    * u     *''     i=0 J 

Then j = 0 gives 
K K 

1=0 1=0 
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the consistency condition for LMS methods for ^„.(0) = ß». = ß, •   This confirms 
Ki Ki       i 

that NLMS methods are a generalization of LMS methods. 

We determine A .(Ah),  without loss of generalitj, by selecting a    = 1. 
Ki K 

In addition, we require the condition of strong stability to be realized, i. e., 

Re |X(A)l < 0.   The *   . (Ah) are determined by means of (3.31), which can be 
' ' Ki 

considered as a matrix equation for K-step, p-th-order method (K > 1, p > 0).   On 

the other hand, we can select ^    (Ah) to determine o.'s as well, but we choose 

not to do this since we would have to investigate the strong stability of tne 

resulting a.'s.    It is easier to choose a.'s   to be strongly stable and then 

solve for ^    (Ah).   An approach to the selection of a.'s to ensure strong stability 
Ki 1 

is presented below.   The (K x K) companion matrix of the characteristic polynomial 
K i 

p(f) = 2_^ ai f  takes the form 
i-0    1 

0 

1 

0 

K-l 

K 
for a    chosen to be 1.   We require that p(l) = 0; then  /. ". must equal 0. 

K i^O   * 
Apply Gerschgorin's estimate columnwise to obtain the eigenvalues of the com- 

panion matrix, and impose the condition that the eigenvalues lie on the boundary or 

inside the unit circle.   For the first (K-l) columns, we have the same estimate: 

| X-0| < 1 . 
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The estimate of the last column gives 

K-2 

i=0 

which implies that 

K 1 

i 0 

where we require the bound to be < 1. 

Next, we look for conditions of a   that produce strong stability.   Consider 

where 

A 
a 

K i 

The associated (K - 1) x (K -1) companion matrix of the characteristic polynomial 

f> (f) takes the form 

\ 
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Again, applying the same procedure used above to estimate the eigenvalues and to 

ensure that the eigenvalues lie inside the unit circle, we get 

K-3 

i=0 

which implies that 

|X-0| <1  and|x   -(-°K_2)| lE   1^1 • 

1 
K-2 

i=0 
1^1 <i. 

Thus, using 

K 

i=0 

K-l 

IMi1 

and 
K-2 

E 
i=0 

K 

j=0   J    j t°> < 

we can select otj's satisfying the condition of strong stability. 

3.5.2, Matrix Formula for ^ 
Kl 

In (3.31),   i is a column index and j  is a row index.   Let ^ be a vector of 

K -1 oi K elements whose components are ♦„.(Ah); i = 0,1, ... , K-l or K. 
Kl 

Then ^    (Ah) can be determined by the matrix equation 
Ki 

4» = _K"1 H^E* . (3.33) 

Each of these symbols is described in the next section.   For the system of equa- 

tions, the above matrix elements are all submatrices. 

N 
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3.5.3. Explicit Schemes 

Equation (3.31), expressed as a predictor, takes the following form when 

♦,„(*■»-o= 

J+1K-1 t-^t^-^P^ (3.34) 

for j = 0,1, ... . p.   Now, we have 

/: 

I + Ah 

^-L     m! 
m=0 

I + KAh 

%e 
KAh 

ale 
(K-l)Ah 

m=0 

fAh 
0! 

(Ah 
1 

o 
v. 

O 

iAh^ 
(P-l)!. 

I      I      ... 

0     I 

0    I 

(K-l)I 

^ 
K0 

* Kl 

(K-ljP"1!/   U K,K-1 

(3.35) 

- 
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In the matrix form, we get 

E* = -HK«- (3-36) 

Thus, 4»   can be obtained by (3.33).   Here, 

K'iKii) 

1" (Bu) 

•■ (*Jt.l) 

♦- (♦j.l)' 

where 

1 = 1, ... , p 

j = 1» • • • , K 

J2 = 1, ... , K + l. 

3.5.4. Implicit Schemes 

If we use (3.31) as the formula for a NLMS corrector, for +      (Ah) ^0, 

we have 

i=o   4 JFo ■'•1=0 



for j = 0,1 .,. , p.   Now we have 
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I+Ah 

Z-#      m! 
m=0 

I + KAh 

^   (KAh)m 

2-r      m! m=0 

aoe 
KAh 

"l6 
(K-l)Ah 

^K1 

'Ah 
0! 

iAhL 
1! 

o 
I 

o    i 

This gives the same matrix form as (3.36), where 

H ■ {»mm) 

K " (Kmm) 

E * (***) 

•-(•jl) 

where 

m = 1 p + 1 

i  =1 K+l. 

KI 

KPI 

♦ K0 

4» Kl 

w 
(3.37) 

• 
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3. G.      Lemmas 

We now come to the most important theorem, the convergence theorem. 

Before this theorem can be prcned, three lemmas arc needed.   Tue proofs of two 

lemmas and of the convergence theorem are an extension and modification of the 

proofs of LMS methods developed by Henrici [16].   We begin by establishing the 

formula for discretization error in the approximate solution of an arbitrary differ- 

ential equation by NLMS methods. 

3.6.1. Lemma 3. 6.1 

Consider the general characteristic polynomial, 

p(X.r) = P(X(A).0=E *. (e      r1). 
i-0 

which satisfies the root condition; i. e., 

p (X, 1) = 0 V X = x^A) . 

It is easily seen that p(A,f) also equals 0 : 

Ä       ,*    v    V^      , AhK   iv    v^        Ah(K-i), Ah   i     _ _ _„ 
0 = P(A,t)-2^ ai (e f)=Zwaie ie     0=0. (3.38) 

i-0 i=0 

The following lemma is a generalization of Henrici [l6]. 

Lemma 3.6.1;  Define the scalars 7, = 0 for i < 0,where i is an integer index. 

Then,   3 a set of bounded scalars { ^ } 9 

I     .0 = 0 » 

0;   J«>0 i-0 

Ah(K-i) (3.39) 
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Proof;  V/rite (3, 38) as 

K 
Ah(K-i)   i p(A,r)-p(e)-]r « e  *" -'^.o , 

i=0 

Ah 
where | = e f.   Consider 

#.,. |A Ah Ah(K-2) AK-2 Ah(K-l) ^-1 AhK, 
"(^""K K-l e + -"+a2e » Ie »       +aoe ' 

.K, .-K Ah  -(K-l) 

K 

= |"(«Kr" + aK-ie   "'I'" "' + ..-+aoe""X" ^ &    +aie I 
Ah(K-2)   -2 Ah(K-l) .-i 

AhK .K    . -1. + «0
e    ) = e MI ). 

The roots of each row of p (|) are the reciprocals of each corresponding row of 

p(^).   Note that e      7*0 and p(^) =e P(f).   By lemma 5.5 (Henrici [16]), 

the p(f) of each row has no roots outside  | fj = 1 because of the root condition.  It 

follows that [P   (|)]     is holomorphic inside   |f|< 1 for all n rows.    Using the 

#       -1 Maclaurin expansion for each row of [P   (^)]    , we find 

i=0 

(3.40) 

By Cauchy's estimate, it is seen that all y   are bounded.   To prove (3.39),  we 

multiply both sidee of (3.40) by P (g) and equate the coefficients, obtaining (3.39). 

Q.E.D. 

From (3.5), since a    ^ 0, we can write 
K 

K'1     eAh(K-i)       .+hy *  .(Ah)fl    . 
n+K     "K        &     i n+i        6o    Kl n+1 

i K-1 

(3.41) 

which is of the form 

y = G(y). (3.42) 

. 
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where y = y   „ •   The successive iterative form gives 

y<'+1»-o(y<") (3.43) 

for any initial vector y     . 

Let G(y) be defined for |ly|| <<« ,  and let 3 a constant k ? 0 < k < 1. Then 

G(y) satisfies the condition 

||G(y*)-G(y)||<k||y*-y|| . (3.44) 

Using the definition of G(y), formula (3.41), and the fact that g(t,y) satisfies the 

Lipschltz condition with Lipschitz constant L ,  we see that condition (3.44) is satis- 

fied by 

MH>KK(Ah)|| 
k = ^  L (3.45) 

K 

for sufficiently small h and for all   ||A|| < «> . 

For the iterative procedure (3.43) to converge for arbitrary initial y    , 

k is required to be < 1: 

hilWAh)ii 
k<l- ^^  L<1. (3.46) a 

K 

Conventionally, when using LMS K-step methods with «■ 1, we select h? 
Y 

O^hL* ~ <c   (<1) . (3.47) 
K 

Similarly, for NLMS K-step methods, we select h    to satisfy condition (3.46): 

Combining (3.47) and (3.48), we see that 

h   = 
N ♦;>vl SK T h 

\ 
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For ♦ ~1 (Ah ) Q    not too small, we know that L* » L ; therefore, h   » h. 
K N 

This tells us that we can choose a much larger step size using NLMS than we can 

choose using LMS. 

3.6.2. Lemma 3.6.2 

Lemma 3.6.2;  Let h satisfy the condition (3.46).   Then 

K 

Ell*Ki<Ah)ll 
i=0 

<CO    . 

Proof; The ^    (Ah) are linear transformations in a finite-dimensional vector 
"~——~— Ki 

space; therefore, they are completely continuous (Bachman [1]). Every completely 

continuous transformation is itself continuous.   In finite-dimensional spaces, a 

linear transformation is bounded if and only if it is continuous.   Hence, 

ll^(Ah)||< Ki 
(3.49) 

for i = 0,1,2 K; therefore, 

K 

I>Ki(Ah)ll 
i=0 

< * . 

Q.E.D. 

3.6.3. Lemma 3.C.3 

The next lemma, a generalization of Henrici [16],  concerns the error 

growth of NLMS methods.   The proof of this lemma is preceded by a list of neces- 

sary definitions.   Let 

(1)   supfk |}<r 
i 

K 

(2) E l-tl-a 
i=0     l 

V 
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(3> max|eKX<A>h|;    0 < Re{x (A)} < « 
E = 

1 ;    Re{x(A)} < 0 

(4) Let z,,   be initial guesses 

l«J< SV» 

(5) I.et \v be the growth parameters 

IM<AV, 

(6) -lid-H^^r1! 
K 

&>    Ki 

(8)   n = 0,1, ... , N. 

Lemma 3.6.3;  The growth of the solution (x   ) of NLMS satisfies the following 

inequality: 

II xj 1 <T( .E5+ NA) e1**70. (3.52) 

Proof; We begin by examining the error growth of the NLMS nonhomogeneous dif- 

ference «equation; 

Vz  ^+VieAh«  .v ,+...+«  eKAhx K   m+K     K-l m+K-1 o m 

= hiK       z     ^ + ^ i        x   ^ i + • • • ♦        Z    I + X     , (3.53) |  K,m    m+K       K-l,m   m+K-1 o,m   m)       m ' 

where m = n-K-j?; J2=0, 1 n-K.   For A = 0, this reduces to the LMS 

case.   For A / 0, we approach an error bound.   We multiply both sides of (3.53) 

by 7   for J = 0,1, ... , n -K.   We then sum up each side and use formula (3.39) to 

obtain: 

\ 



-v 

37 

LHS - zn + (a^ eAh Yn_K + ... + a0 eKAh 7n_2K+1) X^ 

2Ah KAh v_ 
+ <aK-2 e        \-K + •' • + "o e        7n-2KH-2> 2K-2 +' * ' 

KAh 
+ a   e y    „z 

o n-K   o 
and 

RHS = hK.n-K^} Zn + h {♦K-I.H-K ^O 
+ *K.n-K-l \] Zn-1 *'" 

+ h{*o.n-K\ + \n-K-lyl + -+*K,n-2KyK)Zn-K + "' 

The coefficients of I  , 1...... I    , of the RHS are functions of y , $ . o     l n-x i     i,n-R.-i 

If we apply lemma 3.6.2, the norm of the sum of each term inside {   } < <J> r. 

Equating LHS and RHS gives 

V<   )ZK-l + <    )ZK-2 + -"+<   )Zo = h*K.n-K^Jn + h{  'Vl+-- 

+ h{ >Zo + VK>o+Xn-K-in + -- + >oVK)- 

Solving the above equation for z   , we obtain 

Xn = <I-b*K.n-K>o>'l[h<>Vl + h{}V2 + --+h{}lo-{<   > Vl 

Applying our above definitions to the terms of (3.54), we obtain 

K t 
n-1 

|h{   >Vl + h{  }Xn-2 + ---+h{  >Xoll-hr<,>S   'I'm11- V'57) 

>XK-l + (   )XK-2 + ---+(   ^oMlI laml)Er5"r9öE (8-66) 

■ 

-v 
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Then, taking norms of both sides of (3.54) and applying estimates (3.55), (3.56), 

and (3.57), we find 

n-1 

E 
m=0 

n-1 

E 
m=0 

Let   L   = <r<t>, 

K^M'^Kn-Kl/^fo™*™!! llzmll+rNA} 
m=0 

= *{** L  Ilxmll + ^ÜE + NA1- <3-58) 

K# = ffCVGE +NA) ; 

then (3.58) takes the form 

n-1 

llXnlUhL#E   llzJ+K#- <3-59) 
m=0 

Note that QEff>l-*K   >Q.   Using mathematical induction, we obtain the estimate 

||Zm||<K#(l + hL#)m (8 60) 

true for m = 0,1, ... , K -1.   Assuming that (3.60) is true for m = 0,1, ... , n - 1 

and using 

iiMi<hL#E iizmii + K* 
n-1 

E 
m=0 

and the formula 

n-1 n 

j=0 

we get 

IMS"-' E K»(l+hLV + K*=hLV^4—1+K# = K#<l+hL#'n- 
m=0 hL 

N 
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Therefore, we establish that 

||.n||<K#e,,hL   . (3.61) 

# # 
Substituting the definitions of K   and L    into (3.61), we obtain 

||zn||<a(::E; + NA)enh<^. 

This is exactly the inequality (3.52), which established the truth for m=n. There- 

fore, (3.52) holds generally for m = 0,1,2, ... , N. 
Q.E.D. 

In section 3.2, Stability,  we mentioned that the root condition is a suffi- 

cient condition for stability.   In this section we show that it is sufficient. 

A 

We let f denote the maximum of the moduli of the roots of the characteris- 

tic polynomial p(j-).   Let the first K initial vectors,  y  ,  satisfy 

||yn||<fny   for n = 0,1,2 K-l, 

where ;   is a constant.   Let z be a set of starting vectors whose starting values 

satisfy 

A_n 

If we set z   = f     y   and apply lemma 3.6.3 to x   , we find 
n »n n 

Since all roots lie on or inside the unit circle,   ny II remains bounded, thus estab- 

lishing the stability.   This completes the proof of the following stability theorem. 

Stability Theorem;  A nonlinear multistep method is strongly stable if and only if 

its characteristic polynomial satisfies the strong root condition. 

Now, we proceed, by utilizing all the available lemmas and definitions, to 

prove the convergence theorem. 
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3. 7       Convergence Theorem 

Theorem 3. 7:  (Convergence Theorem) 

A strongly stable and consistent NLMS method is convergent. 

The first step in our approach is to estimate theCi» [y(t);h] at t = t .    In 

our general formula (3. 5), g(t,y) is assumed to belong to C      ,  in which case we 

can directly use (3. 25) to estimate the nonlinear operator.   However, g(t,y) may 

not always be differentiable, and, in this case, we need to use a different approach 

to estimate the nonlinear operator, which is what we will do in our proof.  We want 

to use the condition for stability and consistency to prove that 

lim   y   =y(t) V tC[a,b]. 
h^O 
t=t 

n 

Note that the use of strong stability gives a desirable estimate for 

JL   [y(t);h] since Re{x(A)} < 0.   However, growth estimates may differ, depend- 

ing on whether Re{x(A)} < 0 or Re{x(A)} > 0. 

Proof;  Let y(t) be the solution of y' = Ay +g(t,y); y(t ) = y 

y     be the solution of V" ". e y , • = h 7^ 4»^. fl ^ 'n 4-1'    i 'n+i        f-r*    Kiwn+i 
i=0 i-O 

Set 

V.    be the starting values for j = 0,1 K -1 . 
jo 

6(h)=max||y    -y(to+jh)|| , 

j 

and assume that lim 6 (h) = 0.   We want to show that for any t C[t  ,b] , 
h^0 

lim   y  =y(t) . 
h-0 
t =t 
n 
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Before we come to the proof, let us make use of both the stability and the 

consistency conditions to derive an identity that will be used to estimate the NLMS 

operator CK*   [y (t); h].   Formula (3.31) gives 

£        Ah(K-i)   vU   (iAh^       (Ah)3+1   K 
L«!e L ~jr- = -—T— Li VAh) • 
i=o I^o •'•      i=0 

Set j = 0.   Simplifying the above formula, we obtain 

f ae^-^Ahf VAh)=0. 
i=o   i i=*   Kl 

This is a consistency condition when j = 0. 

Define for t > 0 , the M, O. C. (modulus of continuity): 

W(0-        max        ||g(t*.y)-a(t,y)|| . 
|t*-t|<« 

t*.tC[to.t] 

For i = 0,1, ... , K, we can write 

(3. 62) 

where 

g(t.y)=g(tn.y) +ef «(ih), (3.63) 

e^||<l and |t-tn| <ih. 

Substituting (3. 63) into (3.2), we obtain 

Ah r*    •    A(t ,•-*') 
y(W = e       y(tn)+ -In+1 e [g(tn.y)+ef a,(ih)]dt'. 

n 

Then, 

/f    ^      iAh ^     rVi   A(tn+i-f) ^  rVi   A(tn+rf) 
y(tn+i) 

= e      y(tn)+ Jt        e dt' g(tn.y)+ Jt       e dt 
n n 

.efu,(ih). (3.64) 

If we apply 

Jtn+ieA<Wt')d.. = -A-1l,-elAh(, 
t n 



TJ 

42 

then (3. 64) becomes 

y(tn+i) = e^y (y - A 1 h - eiAhl g(tn.y) - A"1 |l - eiAhie^ w(ih) 

lAh 
If we write A    |l-e       f = 0(h),  the above formula becomes 

y(W=e'Ahy(t.)-AMl-eiAhtg(._, g 
n 

g(tn.y)-0(h)e?,u.(ih) 

Multiplying both sides by a. e     ^ and summing over i,  we get 

K 
Ah(K-i)    ..     . , a. e     x        y(t ..) = 

i 1   n+i 
V^ Ah(K-i) iAh Ä v > a e x ' e y(t ) 
^    i n' 
i=0 

- [A"1 f-, .Ah(K-,)(i-.,Ä,)9(tI1.y)] -E.1.
Ab<K-,)o(h)ef«(ih).   (3.65) 

K 

c 
i=0 

Since the method is stable,  it must satisfy the root condition.   Therefore, 

K A KV- K 

p(l) = X] 0- = 0 » which implies |    } of (3.65) = e        y(t ) X] "• = 0 •   Simplify- 
i=0   1 n  i=0   1 

ing [  ] of (3.65) and applying the same root condition, we find 

.-1^       Ah(K-i) „      iAh,    „      .       A-l V^      ^AhCK-i),,..      . 

i=0 1=0 

Therefore, 

V>       Ah(K-i)    Ä     x       .-1 v>       AhOC-i).,..      . 
^«i6     'vW"^ g0ie       •(tn»y) 

K 

Oft) X! ai e 

i=0 
^^-^ef.dh) 

And 

(3. 66) 

K K r^ e 
hE *Ki(Ah)fl(tn+i'y) = h S ,,>Ki(Ah)fl(tn'y) + h S ^Kl^^   ^^ ' i=0 i=0 i-0 

(3.67) 

s 
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Then, (3.66) - (3.67) gives 

<£N [yTO^] = {-A-l(|: a, .*"(«-«> +Ah|; ^(Ah,) 9(.n,y,) 
K r 

i^6 

f (oo.),,.*^-«^^^»«»^). 
By the consistency condition (3.62), i    [ -► 0 

^[y(t);h]||<Qfha,(ih), 

where 

Q#h=£(||0(h)|| |« | lle^^H +h||<t,    (Ah)||). 
i=0 IM / 

Formula (3. ö) - J^ [y(t); h] gives 

K K 

g«. ^"^""(y,,., - y(tn+1)) - h g ♦Ki(9n+I - g(tn+i. y(tn+i))) -o.f h *m 

where 
K I 

i=0 
Q-i;(0(h)«1e

Ah<K-1)
+h*Ki(Ah)) 

Let y   - y (t ) = e  .   In view of the Lipschitz condition for g ,  i.e., 
'n    ' ^ n        n 

g(tn.y(tn))-g(tn.yn)||<L||y(tn)-yn| 

we can define 

g(tD.y(tn))-9(tn.yn) = 
g  e    for  || o || ^ o 
n   n "   n" 

I        for  || en ||=0 

so that we get 

K t 
1=0 
£ -. «Ah(K"i, v. -" E (♦K.) ^.«».i=Q9f "-<«" • 
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We now apply lemma 3.6.3 with 

e   = X   ;    6(h) = 
n       n        w 

0    =laol+lall+--- +laKl 

E  = max lie      II 

K _ K 

gi^KiiiVi^EiiM L -^ 

' ' ^-^KK^^'1' 

t   - t 
n      o 

A   =||Q|| hw(Kh) 

and obtain 

(t -t )aL<<> N n   o7 

|| e || < a (a E«(h) + (tn - tj IIQ II w(Kh))e 

as   h -♦ 0 and both i(h) and w(Kh) ■♦ 0. 

.". the above bound e   -* 0 for every tC[t ib] , establishing the results. 

Q. E.D. 



4. COMPUTATIONAL CONSIDERATIONS 

In this section, we first provide a general description of the different 

types of computational errors and then describe how we treat them at the present 

test stage.   Then we introduce an algorithm to compute eÄ when A  is a function 

of t. 

We define the error function C    , to be the first term of the initial local 
P+l 

discretization error of the NLMS operator.   We perform a general analysis on 

the error function C      > which is dependent on the characteristic polynomial 

coefficients and the characteristic roots.   We will show that, for LMS methods, 

it is possible to select values of a. such that C    , reaches a minimum. We will 
^ i p+l 

show, by example, that these methods are not strongly stable. Some interesting 

results are presented, which although they are not made conclusive at this time, 

do provide information for future research. 

4.1      General Considerations 

Errors in computation by NLMS methods are attributable to the following 

sources: 

(1) Input and output conversion errors 

(2) Computational round-off errors 

(3) Matrix inversion errors 

(4) Pade approximation errors 

(5) Local and global discretization errors. 

Errors of types (1) and <2) depend on the computing device and the soft- 

ware package. Accuracy can be maintained at a desired level by using double- 

precision arithmetic. 

45 



To minimize the errors, the matrix inversion package developed by 

Forsythe [12] was used for all test problems.   If necessary, theto errors can be 

improve«.1 further by using double precision arithmetic. 

The Pade approximation is stable as a consequence of the Pade lemnri, 

section 3. 2.2. 

The bounds of the local discretization errors can be estimated by formula 

(3. 52).   The error function C       will be discussed independently in section 4. 3. 

Since N/JMS methods are strongly stable when applied to the solutions of stiff 

equations, the global discretization errors remain bounded within the numerical 

approximation provided by the NLMS methods.   The growth of this type of error 

for all A can be estimated by applying lemma 3. 6.3. 

The round-off errors depend on the precision of the computing device, 

which in turn is dependent on the number of digits used.   This type of error is 

also dependent on the number of operations involved.   It should be noted that when 

A K 
applying NLMS methods, the computation of eÄ and the inversion of (Ah)    could 

have been carried out by techniques other than those used here.   To aid in the 

appraisal of the round-off errors incurred when obtaining y   , ,  we have pro- 
n+l 

vided table 1 to show the number of operations required for each iteration in 

terms -f scalar, vector, and matrix operations.   As far as operational counts 

are concerned, the use of NLMS methods does not result in fewer operations than 

does LMS methods.   Albeit the LMS methods are not optimal in this sense, a 

submember of the LMS methods, i. e., the Adams family, does minimize the 

number of arithmetic operations because it chooses a    = 1, o        = -1, and the 
K K -i 

remaining  a's = 0.   Of course, where functions have operations in common. 

• 
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the operattons should be calculated beforehand so as to minimize the total number 

of calculations. 

Table 1.   Table of Operations 

Description 

Step 1 Step 2 Step 3             * 

| Explicit Implicit Explicit Implicit Explicit Implicit 

S I S 1     I S I S I S I S    | 

(Scalar)   (Vector) 1 1 1 1 1 

(Scalar)   (Matrix) 5 4 7 10 35 

Vector Additioi 1 2 2 3 3 4 4 5 5 6 6 

Matrix Addition 2 4 15 22 46 

(Matrix)   (Vector) 2 3 3 4 4 5 5 6 6 7 7     | 

Matrix Multiplication 4 5 11 14 19 

Fade * 1 * 2 * 2 * 3 * 3 * 

Matrix Inversion * 1 * 1 * 1 * 1 * 1 * 

Evaluation of g(t,y) 1 2 2   | 2 2 3 3 3 3 4 4 

Symbols: I - Initial step 
S - Subsequent steps 
* - Needed if A = A(t) 

4.2      Function A(t) 

For Re j \(A(t))| < 0 V t,  A(t) can be evaluated by the Fade approxima- 

tion at every t..   Lawson [24] introduced an Algorithm II, a periodic estimation of 

k    dy 
t=kh 
y=y(t) 

which can be adopted in our evaluation of A(t). 

This thesis takes A(t) into consideration, but in the test examples A is 

chosen to be a real constant matrix.   The evaluation of A(t) will be included in 

the computation package, which is already under development by the author. 
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4.3       The Error Function   C    ^ 
P+l 

We will now examine the error function C    ,  for the LMS methods of 
p+l 

order p.   The following three questions arise: 

(1) Can we select o   among the strongly stable families such that C    , 
i p+l 

is at its smallest magnitude ? 

(2) If the answer is "yes" to question (1), is the Adams family the optimal 

family ? 

(3) If the answer is "no" to question (1), what is the choice for o. such 

that C 1 is at its smallest magnitude ? Which family exhibits this 

characteristic ? 

When answering the above questions, one should note that when A =0 > 

NLMS methods reduce to LMS methods.   J. we multiply both sides of formula (3.30) 

b> [(Ah)^1]"1 and let II A|| - 0 , we get 

K J+l .   JC 

SöiöTT)TTSiJV0)- (4.1) 

For j = 0,1, ... , p - 1,  equation (4.1) gives a formulation of the LMS methods of 

order p.   The matrix form is: 

0 1      ...       K\      /   a    \ /l 1 /■ 

IP"1 

(p-l)I 

(4.2) 

(p-1) 
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We are interested In expressing 0. (= ^.(0)) as a function of a.,  and a 
i        Ki i i 

as a function of the characteristic roots f .   Thus we need to perturb the roots to 

determine the effect on the error function C    , when LMS methods are used, par- 
p+1 

ticularly when using the Adams family of the LMS methods.   For convenience in 

usins formula (4. 2), let us list the first few C      's for LMS methods of order up 

to 3. 

Explicit Integrator; 

For K = 1, p = 1, 

*l,0=ol 

LMS       C^l^ 

Adams   C   = - . 

For K = 2, p = 2, 

LMS       C   = a   +— o 
3        12    1    3    2 

Adams   C   = r- . 
3    12 



For K = 3, p = 3, 

/♦      \        /fa   +i 
/ ^3,0 \       / 12     1    3 2     4     3 

3,1 
8 4 

—   a    + — Q 
12     1     3     2 

,   *        /       \      ! ^        .9 \   9        / \ - —   a   + — a   + — a 
V   3,2/ \    12     13     2     4     1 

LMS        C    = — a   + — a 
4    24     1    24     3 

Adams   C4 = - . 

^V 
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Implicit Integrator; 

For K = 1, p = 2, 

V 

LMS       V--^ 

Adams   C3=- . 

For K = 2, p = 3, 

> 2,0 

♦ 

V 
2,1 

2,2, 

—  o   + — a 
12     1    3    2 

8 .4 

12     1    3    2 

1 1 - — o   + —  o 
.    12    1    3    2, 

LMS        C4=i4ai 

Adams    C. ■ - rr . 
4       24 



For K = 3, p = 4, 
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9 13 r—   a+— a   +—  o 
24     1     3     2     8     3 

19 4 9 —   o    + — Q    + — a 
24     1    3     2     8     3 

5 19 
24     1    3     2     8     3 

a 
4     1 

3 
+ —   Q 

8     3. 

TVTQ       r 19 1 3 

5        720     1     90     2     80     3 

Adams    C   =  v5       720 

etc. 

The resulting C    , in terms of a. is summarized in table 2. 
p+1 i 

Let f  be the roots of the characteristic polynomial p(f) satisfying the 

root condition of stability.   The relationship 

K K 

j=l J       1=0 
(4.3) 

enables us to express o    as a function of  f..    From (4.2) we can express 

♦    (0) as a function of a  ; ♦„.(0) can also be expressed as a function of f. 
Ki i       Ki j 

s 
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according to formula (4.3).   Using f  = 1, we can convert table 2 into table 3, 

which describes r    .  as a function of f. . 

Table 2.   r    , in Terms of a, for LMS Methods 
p+1 i 

i    ^yOrder p 

Step K\ 

c 
2 

c 
3 

c 
4 

c 
:                 5 

1    ^ a 

i 

i 
1 
2ai 

2 1         .1 — -^ a   + — a 
12    1     3    2 

3 1   ^       9 — Q   + — a 
24    1     24    3 

4 

19              1 
  Q a 

720    1     90    2 

3             14  a   + — a 
80    3     45    4 

E o 

1 
1 - — o 
12    1 

2 La 
24    1 

3 

19   0       1 
" 720    1     90 a2 

3_o 

' 80 Ö3 

4 
i 

\ 
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Table 3.    C +1 ^ Terms of t   for LMS Methods 

^^^Order p 

Step K^N. 

c 
2 

c 
3 

c 
4 C5 

s 

I 

1 1 
2 

2 
12 + 12    2 

3 

+ 24f2f3 

4 

19 
720<f2 + Vf4> 

+ 720(f2f3 + r2 4 + f3^ 

19    f               251 
+ 720   2 3 f4 ' 720 

u 
3 

I o 
O 

1 
' 12 

2 
24    24   2 

3 

19       11 
" 720 ' 720 (f2 + ^3^ 

-n n 720   2^3 

4 
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Using table 3, we can examine the change in C        when we perturb the 

root f. . 
J 

Initially, xet us examine the second-order predictor, 

LMS     C   = —+ — f   . 
3     12    12  s2 

5 
The choice of f0 ■ 0 implies that Adams C   = — . 

& 3     12 

In order to perturb the root f  ,  we write 

It is easily seen that when f  + • = -1, C „ will be at a minimum.   We vary t to 
2 o 

perturb f .   When we keep < positively small, the method remains in the strongly 

stable family.   As «-♦ 0 and f -» -1, this method is shifted to a weakly stable 

family.   Now we have found an interesting answer to question (2): Among LMS 

methods of order p, the Adams family does not have the smallest error C   , • 
p+i 

Similarly, from the same example, we observe that LMS methods of order p that 

possess the smallest error C    . are not strongly stable.   This can serve as an 
p+i 

answer to question (1).   We now arrive at the followiit6 conjecture: Among LMS 

methods of order p, the weakly stable families possess the smallest error C  . * • 

The above study indicates that there should exist an NLMS family that 

possesses the smallest error function C    , •  This optimal family is not yet iden- 
p+1 

tified and will not be identified in this Jiesis. 

We desire to make the best possible choice of a ,  so that when applying 

NLMS methods, a minimum error function C    , results.   Our recommendation is p+1 

N 
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as follows: Identify an NLMS family whose a   = 1,  a       = -1,   »„ „ = aw o 
K K-l K-2        K-3 

= ... = a   = 0.   This family, which is a generalization of the Adams family, we 
o 

label GA.   We refer to the predictors of this family as GAB (Generalized Adams 

Bashforth) and the correctors of this family as GAM (Generalized Adams Moulton). 

We have made several numerical investigations with our test problems on 

different selections of a.,from both strongly and weakly stable LMS families, 

without noting much difference in the results.   Without a thorough round-off error 

analysis, one cannot tell how to choose a.'s that will reduce the error function 

C    * .    However, as pointed out earlier,  the Adams fjimily has the least number 
p+1 

of operations,  and this will aid in the reduction of round-off errors.    Until a 

thorough analysis is made of C    , i ^'S recommend the GA family as the represen- 
p+1 

tative family for all the strongly stable NLMS methods. 
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5. NUMERICAL COMPARISONS 

Hull [l9] and Ehle [ll] have thoroughly tested selected existing numerical 

methods for solving initial value problems in ordinary differential equations; Hull 

tested for both stiff and nonstiff differential equations, and Ehle tested for stiff 

differential equations.   Their work stressed the requirement that in order to com- 

pare methods, meaningful criteria must be defined.   Since the tests included in 

this thesis are limited, we do not need an extensive rule for testing purposes. 

There are two basic reasons why we do no', intend to perform extensive 

tests: 

(1) At this stage, the principal objective is to confirm whether NLMS 

methods work effectively on the selected problems.   Some features, 

such as PEC     and double-precision arithmetic, are not yet incorpor- 

ated in our present computation package. 

(2) Although some of the answers that can be obtained by using the Hull- 

Ehle test criteria would be desirable, those answers are not required 

for our present purposes. 

However, we do define reasonable te,<t criteria that should result in a meaningful 

comparison of NLMS methods against the selected methods.   Since each problem is 

different in nature, we will define specific test criteria for each problem. 

To test NLMS methods, we developed a program package for use with the 

Univac 1108.   It is written in FORTRAN V language and in single-precision arith- 

metic.   Adams' formulas are written in the same language and are inserted in the 

program wherever needed.   Gear's program is run independently. 

56 
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NLMS methods have been tested extensively on a number of stiff problems. 

Five stiff problems whose solutions are known have been selected for presentation. 

Problem 5, selected from Ehle's report, has four complex eigenvalues; NLMS 

methods did very well on this problem.   Problem 6 is presented to demonstrate 

how well an NLMS method can handle a nonstiff problem; this problem has one 

eigenvalue whose real part > 0.   The results of the comparisons are presented by 

graph or table or both, depending on the need in each case. 
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5.1       Problem 1 

Problem Description; 

y • =-lOOy + (1 + t2);   y(0) = 1 

Exact Solution: 

^'^---i)6'100'^^'1002'2-200"2» 
Problem Parameters; 

Time Interval:     [0, 1.95] 

Step Size h     :      h = -r ;    i = 1,2, .., , 14 . 
2 

NLMS Methods Applied: 

Explicit 2-step. 

Compare Against; 

Gear's program and second-order Adams-Bashforth method. 

Comparison Criteria: 

(1) Relative error is used as the measure of success when comparing 

methods. 

(2) Gear's program, Adams' method, and NLMS-2-step are used with 

-14 r n 
the same fixed h = 2       over t C [0, 1.95j. 

(3) Adams' method and NLMS-2-step are used with different h - -r » 

i = 1,2, ... , 14 ovi r t C [0, 0.3], where the exponential makes a 
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significant contribution.   For a larger step size > 0, 3 ,  where the 

exponential term damps out, the comparison is made on five suc- 

cessive computations. 

Description of Comparisons; 

Taijle4: Comparison Among Methods of '"tear, Adams, and NLMS o* 

-14 
Order 2 with Fixed h = 2 

Table 5: Comparison Between Methods of Adams and NLMS of Order 2 

for Different h. 

Figure 1:  t versus Log    E . 

Figure 2:   -Log h versus Log    E. 

Eigenvalues;  -100. 

Source; S. Preiser (1969). 

Remarks: 

Gear's variable-order technique, as applied to this problem, involves 

trying different orders up to order 3. However, most computations are car- 

-14 
riedout with a second-order stiff method with an acceptable initial h = 2 

Figure 1 shows that for a fixed small step size, the nonlinear multi-2- 

step method produces more accurate results in terms of relative error. 

—fi 
Figure 2 shows that to maintain an accuracy of the order of 10     , 

-14 
Adams' methods require a step size of 2      , whereas the nonlinear multi- 

_9 
2-step method can use a step size of 2     to maintain the same accuracy. 

i 
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Table 4.   Comparison Among Methods of Gear (G), 
Adams (A), and NLMS (N) of Order 2 

with Fixed h = 2-14 

Number of Steps 

1           t = nh Method Relative Error 

1 
G 
A 
N 

.2163 8476 E-03  1 

. 1055 7626 E-06 

.0 

500 

-1 

A 
N 

.7845 4426 E-02 

.4139 7907 E-04 

.3764 9440 E-05 

1,000 
G 
A 
N 

.3423 0498 E-02  1 

. 1871 0187 E-04 

. 1504 4324 E-05 

5,000 
G 
A 
N 

. 8566 0224 E-06 | 

. 8565 7385 E-06 

. 9636 4558 E-07 

10,000 
G 
A 
N 

.6845 3327 E-06 1 

.6844 9640 E-06 

.4620 3507 E-06 

15,000 
G 
A 
N 

.1061 7635 E-05 1 

. 1061 6991 E-05 

. 1534 9866 E-06 

20,000 
G 
A 
N 

.7836 8658 E-06 1 

.7836 3961 E-06 

.3398 9188 E-06 

25,000 
G 
A 
N 

. 1115 4447 E-05 

. 1115 3821 E-05 

.3953 2531 E-06 

30,000 
G 
A 
N 

. 8522 7857 E-06 1 

. 8522 3467 E-06 

.3236 3342 E-07 
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Table 5.   Comparison Between Methods of Adams (A) 
and NLMS (N) of Order 2 for Different h 

|       - Log2 h Method Relative Error       j 

14 
A 
N 

,4944 3871 E-06 
.2317 6814 E-07 

i             13 A 
N 

|      .3797 0580 E-05      j 
.5607 4696 E-07 

i             12 A 
N 

.3049 6416 E-04     1 

.4306 1870 E-07 

i             11 
A 
N 

.2472 3962 E-03 
|      .5971 7310 E-07 

1             10 
A 
N 

.2028 3254 E-02 

.5312 1861 E-07 

i               9 
A 
N 

.1685 8731 E-01 

.7057 9671 E-07 

j               8 

A 
N 

. 1383 0503 E-00 

. 1135 2181 E-05 

i     7 A 
N 

. 1269 6386 E+01      1 

.3016 8420 E-04 

;        e A 
N 

. 3223 7045 E+03      j 

. 2619 8035 E-03 

1         5 A 
N 

. 3333 8325 E+05 

. 1237 5420 E-02      | 

!               4 
A 
N        j 

. 1516 9195 E+07 

. 5426 6854 E-02     j 

3 A        1 
N 

.4206 1372 E+08     1 

. 1789 7609 E-01 

2 
A        | 
N 

. 7013 3530 E+09     1 

.3655 0522 E-01     j 

1 
A        i 
N        | 

.7568 7259 E+10     | 

.4881 1901 E-01     j 
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-1 r 

t = nh 

Figure 1.   c versus uog    E 

9 "" 
,-•■■ 

7 -  ADAMS 

 NLMS 
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5 - .■■' 

3 - _. 
.•' 

1 

0 

-1 

-3 

-5 

-7 

i i              i              l 1               1              1 
14 10 8 

-Log2h 

Figure 2.   -Log h versus Log10 E 

X 
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5.2       Problem 2 

Problem Description; 

yt = -looy + (1 + t2 - t4);   y(0) = 1 . 

Exact Solution: 

/«  /"   2  , 24 \ -10öt / 1   2    24 \ 
y(t)= T7^ ^—R- e   + T7^ + 100 1003 looV      \100 1003 1005. 

/ -2   24 \ ^ / 1   12 \ ^2   4  3   1 A 

Problem Parameters; 

Time Interval: [o, 20] 

Step Size h      :   2N(. 1E-05);    N = 0,1  

NLMS Methods Applied; 

Explicit 2-step. 

Compare Against: 

Second-order Adams-Moulton method. 

Comparison Criteria: 

Compare the results, by means of relative errors, after the first calcu- 

lation since ihe initial local discretization and round-off errors are the 

smallest then. 

Description of Comparisons: 

Table 6; Comparison Between Methods of NLMS-2-Step and Second- 

Order Adams Moulton. 

Figure 3;   Log    E versus N. 
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Eigenvalues;  -100 

Source: S. Preiser (1969). 

Remarks: 

-7 Figure 3 shows that, for a required accuracy of 10    , Adams' step 

size needs to be chosen ~2  (.2 E-06); NLMS can maintain the same accu- 
•I q 

racy using a step size ~2    (.2E-06).   This shows that h^ = 100h. = IIAll h   , 

confirming our analysis on the step size. 

4 - ...••  

3 - ..••'■' 

? 

1 

-   ADAMS 

  NLMS •• 

0 - • 

-1 - / 

f 
_J 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 1          1 1      1       1       1       1      1       1      1 .. i       i       i       i i       i       i      i      i      l 

10 15 20 

N 

Figure 3: Logl0E versus N 
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Table 6.   Comparison Between Methods of NLMS-2-Step 
and Second-Order Adams Moulton 

h = 2N(.lE-06) 

N 

Relative Error          1 

NLMS Explicit 2 Adams Bashforth 2 

0 .0 .7450 8757 E-08 j 

1       1 . 1490 2341 E-07 .0 

i      2 .7451 7609 E-08 .7451 7609 E-08 

3 "452 9413 E-08 .7452 9413 E-08 

4 .7455 3027 E-08 .7455 3027 E-08 

5 . 1492 0056 E-07 .0 

,       6 . 1493 8974 E-07 .0 

1       7 .0 .2246 5323 E-07 

8 . 1505 2984 E-07 .5268 5443 E-07 

9 .7603 1685 E-08 .4561 9011 E-06 

10 .7758 8486 E-08 .3623 3823 E-05 

11 . 1615 9463 E-07 .2963 6455 E-04 

12 .0 .2478 3312 E-03 

13 .1029 9568 E-07 .2167 8635 E-02 

14 .7108 4830 E-07 .2076 5414 E-01 

15 .7129 6095 E-06 .2390 2048 E-00 

16 . 1606 4611 E-04 . 3890 9526 E-K)l 

17 . 5174 4164 E-03 . 7090 2860 E+02     1 

18 .4007 2017 E-02 .2529 4871 E+03 

19 . 1700 8785 E-01 . 4998 2459 E-K)3 

20 .50413123 E-01 .9109 8973 E+03 

21 .5908 2495 E-01 .1709 4020 E+04 1 

22 . 1357 5798 E+01 .1050 7818 E+04 
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5.3       Problem 3 

Problem Description: 

Exact Solution. 

1    .95e-2t-48e-96tN 

\48e-96t-e-2t 

Problem Parameters; 

Time Interval: [0, 10] 

Step Size h    :  h = -?-  ;    i = 0,1, ... , 15 . 
21 

NLMS Methods Applied: 

Explicit methods of steps 1, 2, and 3. 

Compare Against; 

Exact solution. 

Comparison Criteria; 

The tolerance definition follows Ehle; i. e., 

ymax = max |||y  ||,  max | y. || ;   k ■ 0,1,... , 1 

Error = 
yi+i'^w*!'^ 

1             ymax 
1                              l                   H 2 

Ehle's tol 
-7 

erance = 10 

Results are tabulated at t = 10 for different h by different NLMS 

methods in terms of above error. 
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Description of Comparisons; 

Table 7:  Ehle Errors by NLMS Methods for Different h 

(Max. Ehle error = 10"4' 8 to lO-5, 9) . 

Eigenvalues;   |-2,-96|. 

Source; Ehle initial value problem 1 [ll] . 

Table 7.   Ehle Errors by NLMS Methods for Different h 
(Max. Ehle error = 10-4. 8 to 10-5. 9) 

1 h-T 
21 

i 

Error 

1-Step 2-Step 3-Step 

0 . 1622 8589 E-ll 

!    1 . 1622 8981 E-ll .7368 3619 E-16 

2 . 1622 8589 E-ll .1217 2031 E-ll .8113 5093 E-12 

!   3 . 1622 8981 E-ll . 1420 1095 E-ll .1217 2423 E-ll 

4 .1622 9374 E-ll , 1521 5431 E-ll .1420 2273 E-ll 

5 . 1622 3879 E-ll .15717888 E-li .15213075 E-ll 

6 . 1552 2089 E-ll .1597 9716 E-ll .1572 6132 E-ll 

7 . 1327 9476 E-ll . 1540 0083 E-ll .1597 5790 E-ll 

'   8 . 1244 0601 E-ll .1323 2902 E-ll .1424 9808 E-ll 

9 .1284 1213 E-ll . 1241 2022 E-ll .1274 2658 E-ll 

10 . 1451 7434 E-ll .1283 5312 E-ll .1242 0126 E-ll 

11 .1637 2653 E-ll .1462 6200 E-ll .1350 7056 E-ll 

12 . 1646 6864 E-ll .1646 5294 E-l1. . 1565 7965 E-U 

13 . 1682 9968 E-ll .1682 0547 E-ll ,1682 0547 E-ll 

14  1 .1757 1092 E-ll . 1757 1092 E-ll .1756 2456 E-ll 

15  | . 1857 5613 E-ll .1857 5613 E-ll .1857 5613 E-ll | 
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5.4       Problem 4 

Problem Description; 

-0.1       -49.9 

/'|      0 -50 

70 

Exact Solution: 

/   -0.1t      -50t\ 
/ e + e 

y(t) = 
-50t e 

-120t       -50t 
e + e 

Problem Parameters; 

Time Interval; [0, 10] 

Step Size h     ;  0. 01 and 0. 2. 

NLMS Methods Applied; 

Explicit methods of steps 1, 2, and 3. 

Compare Against; 

Trapezoidal rule. 

Comparison Criteria; 

(1) The error definition follows Seinfeld; i. e., 

yn-y(tn) 
Error R = ——   for each component. 

y(tn) 

(2) The computation time is also tabulated. 
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Description of Comparisons; 

Table 8:  Relative Error Comparison Between NLMS Methods and 

Trapezoidal Rule. 

Eigenvalues;  |-0.1,-50,-120[. 

Source; Seinfeld, Lapidus, and Hwang [29]. 

Remarks: 

Note that NLMS methods of different steps produce errors of the same 

order of magnitude. This is expected because we designed the methods to 

solve the problem y • = Ay effectively. 

Table 8.   Relative Error Comparison Betwet,. NLMS Methods 
and Trapezoidal Rule 

1 

1          Method h 
Rl R2 R3 Time 

(sec) 
t = 0.4 t = 10 t=0.4 t = 0.4 

Trapezoidal Rule .20 1.0 x10"3 2.7xl0"4 6.5 x107 5 
1.3 x 10 1.3    1 

NLMS-1-Step .01 1.9xlo"5 -4 
4. 7 x 10 2.3 xlO-6 2.5xl0"6 

-1 

NLMS-2-Step .01 1.9 xlO'5 4.7 xlO"4 2.3xl0"6 2.6xl0"6 <I 

NLMS-3-Step .01 1.9xl0"5 -4 4.7x10 2.4 xlO"6 2. 6 xlO"6 <2     1 

NLMS-1-Step .20 1.9xl0"5 4.5xl0~4 4.0 x10"6 4.0x10' <1 
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5. 5       Problem 5 

Problem Description 

Ac* io3 0 

o   1 L' -104 0 

\ 
0 -50 10 

-50/ \« 0 -10 

Exact Solution: 

y(0) = 

. 

-10  t f 3 3 
y1(t) = e lcos(10 t) + sin(10  t) 

-io t r     3 i 
y2(t) - e [cos(10 t) - sin(10 t) 

-50 t 
y3(t) = e        [cos(10t) + sin(10t)] 

-50 t  r- 
y4(t) = e        [cos(lOt) - 8in(10t)]. 

Problem Parameters: 

Time Interval:  [o, OJ 

Step Size h     :  3/2^ ;   i = 0,1 15. 

NLMS Methods Applied: 

Explicit method of step 1. 

Compare Against: 

Exact solution. 

Comparison Criteria: 

The tolerance definition follows Ehle; see problem 3. Results are tabu- 

lated at t = . 91552374 E-01 for different h in terms of above error. 

Description of Comparisons: 

Table 9: Largest Ehle Errors by NLMS-1-Step for Different b 

(Max. Ehle error = lo" *    to i0' '   ) . 
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Eigenvalues;   |-50 + 10 i, -10   + 103 i [ . 

Source; Ehle initial value problem 3 [ll] . 

Remarks: 

Note that table 9 indicates increased errors with decreased step sizes; 

this is probably due to round-off errors. In addition, it is not surprising that, 

for the largest step sizes, errors become zero since NLMS methods were de- 

signed to solve this type of problem exactly in the absence of round-off errors. 

Table 9.   Largest Ehle Errors by NLMS- 
1-Step for Different h 

(Max. Ehle error = 10"2-6 to lO-3' ^ 

1 '■? 
1            i 

Error               i 

1-Step 

1             0 0 

\            1 0 

;                 2 
0             1 

3 . 8092 0713 E-16       j 

4 .3215 5494 E-12       1 

5 . 1028 9758 E-09      ! 

6 . 2478 1019 E-09      j 

7 . 1472 5503 E-08 

8 . 8835 3017 E-08      | 

9 . 8011 5398 E-08 

10 .3071 9531 E-07 

11 .3071 9531 E-07 

12 .3950 8640 E-07 

13 . 2070 1878 E-06 

14 .7513 3183 E-07      i 

15 .4879 6726 E-06 
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5. 6       Problem 6 

Problem Description; 

r   l jy+1   M y<0) = 

10      -9 

Exact Solution: 

2 e* - I 
y(t) = 

^e*- 1 

Problem Parameters: 

Time Interval: [0, 0.082] 

g 
Step Size h   :  1/2   . 

NLMS Methods Applied; 

Explicit NLMS-2-step method. 

Compare Against; 

Exact solution. 

Comparison Criteria: 

Using vector ||* ||      ,  compare results against exact solutions. 

Description of Comparisons: 

Table 10: Table of Numerical Results and Exact Solutions. 

Eigenvalues:  {-10, 1} . 

Source: S. Preiser (1969). 
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Remarks; 

NLMS methods were designed to be effective for g(t,y) belonging to 

the class of slowly varying, low-order polynomials; therefore, it is not 

surprising that the NLMS-2-step method produces accurate results. 

Table 10.   Table of Numerical Results and Exact Solutions 
(N: NLMS-2-Step; T: Exact Solution) 

1          t Method 
Solution 

Relative Error 

y^t) y2(t) 

. 7812 5000 E-02 
N 
T 

. 1015 6862 E+01 

. 1015 6862 E+01 
. 1015 6862 E+01 
. 1015 6862 E+01 

. 14Ö7 1029 E-07 

. 2343 7500 E-01 
N 
T 

.I'H? 4286 E+01 

.1*4    4286 E+01 
. 1047 4286 E+01 
. 1047 4286 E+01 

0            I 

.4296 8750 E-01 
N 
T 

. 1087 8105 E+01 

. 1087 8105 E+01 
. 1087 £5106 E+01 
, 1087 8105 E+01 

. 1369 8305 E-07 

. 6250 0000 E-01 
N 
T 

. 1128 9889 E+01 
, 1128 9889 E+01 

. 1128 9889 E+01 
. 1128 9889 E+01 

.2639 7356 E-07 

.8203 1250 E-01 
N 
T 

. 1170 9794 E+Ol 

. 1170 9795 E+01 
.1170 9794 E+01 
.1170 9795 E+01 

.5090 1528 E-07 

v 



6.    FUTURE RELATED RESEARCH 

The following areas of future research are desirable: 

(1) Develop a package of NLMS computer programs with the following 

features: 

(a) The inclusion of I MS methods 

(b) Freedom to select a 

(c) Built-in PC    procedure with variable step size 

(d) Double-precision option 

(e) Evaluation of A(t) at t = t   and application of Fade approximation 

to A^) . 

With feature (a), NLMS methods can solve nonstiff equations. 

With feature (e), NLMS methods can solve nonlinear equations. 

(2) Perform a thorough round-off error analysis for NLMS methods. 

(3) Develop theory to appraise the error function  C    i 8:) 0** ^01' a cer- 

tain choice of the combination of characteristic roots, one can minimize 

the error function r    ■, • ^•p+1 
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7. CONCLUSIONS 

We have developed a family of strongly and asymptotically stable NLMS 

methods for solving stiff equations.   The advantages of NLMS methods have already 

been demonstrated in various sections of this thesis.   The following conclusions 

can be drawn from the WOIK in the preceding sections; 

(1) Round-off error consideration is absent in tnis thesis.   While it is pos- 

sible that round-off errors will be large for some problems, all test 

results produced by NLMS methods using single-precision arithmetic 

seem negligibly affected by the round-off error encountered. 

(2) It is theoretically true that on a per-step basis, higher order methods 

give better accuracy.    However,  it appears that low-order NLMS 

methods (which require fewer steps) maintain adequate accuracy, so 

that we believe it is not necessary to employ high-order NLMS methods. 

However, if desired, high-order NLMS methods can be derived easily. 

The ucje of high-order NLMS methods can increase computation time 

and round-oft error and, in addition, would require an accurate Pade 

approximation and matrix inversion. 

(3) The findings from the analysis of r    ^ present some preliminary in- p+l 

formation for developing criteria for selecting the characteristic roots 

needed to minimize C      .   Dahlquist [10] mentioned that, for a cer- 

tain class of equations, it would be desirable to have an A-stable method 

with a small truncation error.   Once the minimization of C    ■, is ob- p+1 

tained for NLMS methods, the NLMS methods seem to provide this. 
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(4) We have demonstrated that NLMS methods avoid the use of small step 

size when solving stiff equations.   Not only are low-order NLMS 

methods good predictors and correctors, they can also be used as 

starters. 

(5) After he performed a series of tests on a set of selected stiff equations 

with a set of existing stiff methods, Fhle [11] concluded that none of 

the methods used was, by itself, suitable for solving the entire collec- 

tion of the selected problems.   Means have not yet been developed for 

NLMS methods to handle A(t); otherwise, NLMS methods have been 

applied to solve some of Ehle's problems without a single failure.  The 

NLMS methods consistently produced acceptably accurate results.   It is 

felt that when the A(t) feature is included, NLMS methods will be able 

to handle a much wider class of stiff problems.   At this stage,  we 

can say that NLMS methods are effective for equations whose solu- 

tions are asymptotically stable.    Indeed,  for equations of the form 

*■* = Ay +  ^P(t) (where   (P(t) is a low-order pcynomial in t) in 
dt '       v n w n 

the absence of round-off errors, the technique is exact even for non- 

asymptotic ally stable ordinary differential equations. 



8. APPENDIX - UNTVAC 1108 FORTRAN V COMPUTER PROGRAMS 

This section lists the computer programs, written by the author, that are 

used to perform numerical experiments by NLMS methods.   The programs are 

written in FORTRAN V language, in independent subroutines of the CALL type, for 

use on the Univac 1108 computer.   Compilation was done by the EXEC 8 system. 

At the present time, numerical calculations are performed in single-precision 

arithmetic. 

The variable-step-size technique was not applied in testing the selected 

stiff problems.   The technique will, however, be incorporated in the computation 

package.   This package will have an executive program to control the variable 

step size and will call the listed subroutines as required. 
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C **** NONLINEAR MuLTl-K-bTEP METHODS 
SUBROUTINE NLMSX(KSTEP»HSIZE.YINORO»ALPHA»A»YN»T» INDEX» IS,HOLD) 

C •♦** INuEX=0 CALLS FOR PREDICTOR, OTHERKISE, CORRECTOR 
DIMENSION Y(^.3b)»ALPHMl)»A(35»35).VN(l)»T(l) 
DIMENSION UMl(«»»J5»35)»PHI(^.35,35)fPl(35»3S) 
DIMENSION UwlT(35»3b)»AH(35,35)»AH2(35»35)»AH3(3!>»35)»AH'M35»35) 
DIMENSION t.AH(3b»3b)»E2AH(3b»35)»E3AH(35.35) 
IF(HSlZL-HuLÜ) il.10,11 

JO IF(IS ,GT, i) GO TO (100,200,300)» KSTEP 
11 CONTINUE 

DO 1 UlrNURD 
DO ? •.•rltNOKO 
Pl(l#U)iO,0 
UNIT(I*J)=0.0 
EAH(I»J)=0.0 
E2AH(X»J)sO.O 
b3AH(I»J)=0<0 
AH2(I'J)=0.0 
AH3(1»J)=0.0 
AH<»(I»J)=0.0 

2 CONTINUE 
UNlT(I»I)=i*0 
IFdNDEX  .Ltt.   0)   AH3(I*I):1.0 
AH«»<I»I)=1.0 

1  CONTINUE 
DO 3  l~i»^ 
DO H J=1»NUKD 
DO 5 K=ltNUKU 
PHJ(I»J»K)=0.0 
QHI(1»J»K)=0.0 

5 CONTINUE 
* CONTINUE 
3 CONTINUE 
DO 6 I=1»NUKU 
DO 7 J=i»NüHu 
AH(I»J)=HSi2E*A(I,J) 

7 CONTINUE 
6 CONTINUE 

GO TO  (100»200,300)   »   KiTEP 
C  •***  MUuTU-1-STtP 

100 C2JT,^|pi(AtNOROtKSTe|,fHSXzc,yfUNntFl#AH,EAMiPMItALPHA»YN,INOCX. 
STflSrHOLO) 

RETURN 
C  «•**  MULTI-2-STEP 

200 C^lN«pttÄ>N0H0>K5TlP|HSlÄ|y|ÜNITfpltAH>AMt,EAM,E,ÄH,pHlfALFMA, 

SYN>1NDEX»T»1S»H0LU) 
RETURN 

C **•* MULTI-3-STEP 

300 C^l^p3UfN0RUfRSWfHgl2C#Y#ÜN,T#AM|AMt,AM3,AMI|.eAHfEUH.f»ÄH. 
»PHI,GHI, ALPHA»YN»INDEX»!»IS,HOLD) 

RETURN 
END 
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NONLINE.AR MULTl-1-STEP 

SUBROUTlNt: STEPl(A»N»KSTEPiM.Y»UNIT.Pl»AH.EAH,PHl»ALPHA.VN»INOtX:T 

SiISfHOLO) 
DIMENSION Pi(35»35)»AH(35i3b)»EAH(3bt35)»UN1T(35»35) »Y(U»35) 
DIMENSION A(35»35) »PHI U(35f35)»6(3b)> ALPHA (l)*YN(i)>T(l) 
DIMENSION Ah2(3äf35)»E2AH(3S*35) 
DO 132 1=1»N 
DO 133 J=1»N 
P1(I»J)=0.0 

133 CONTINUE 
IF(IS .EQ. 1) PUI.I)=1.0 
YNII)=0.0 
PHl(2»I»l)=0.0 
PHI(3»I»1)=0.0 

132 CONTINUE 
IF(H-HOLO) iui,mo,i»*i 

140 IFdS.GT.l .AND. INDEX.EQ.O) 60 TO 131 
IFdS.GT.l .AND. INDEX.bQ.l) 60 TO 170 

141 CONTINUE 
c **** PI=(AH) INVERSE 

IF(N -I) 121»120»121 
120 P1(1»1)=1,/AH(1»1) 

60 TO 122 
121 CALL INVtRruHrN.Pl) 
122 CONTINUE 

C ••*• EAH=PADE(bXP(AH)) 
IFiN -1) 124»123»124 

123 tAH(l.l)=EAP(A(l,l)»H) 
GO TO 125 

124 CALL PADECA.HrEAH.N) 
125 CONTINUE 

DO 103 I=1»N 
DO 104 J=1»N 

C «*** AHdtJ^AuPHA-O^EXPCAH)*! 
AH(I.J)=ALPriA(l)*EAH(I.J)*UNlTd»J) 

104 CONTINUE 
103 CONTINUE 

C ««** PREDICTOR 
IF(INDEX .Nt. 0) 60 TO 150 

C •*** TO COMPUTE. PHI (1*0) 
DO 105 I=1»N 
DO iCb J=1»N 
DO 107 K=1»N 
PHdl»I.J)=PMl(l»I.J)-Pl(I»K)«AH(K»J) 

107 CONTINUE 
106 CONTINUE 
105 CONTINUE 
131 CALL 6FN(6»H»N»Y.KSTEP»T»A) 

C «**« Y(N*1)=YN 
DO ioa I=1»N 
DO 109 J=l»N 
YNd)=YN(l)*M*PMl(l.IiJ>«G(j) 
YNd)=YNd)-ALPHA(l)*EAH(I»d)*Y(l»J) 

109 CONTINUE 
10B CONTINUE 
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KtTuKN 
C •*»» CüwRtCTÜK 
C *»♦» TO COMpUTt. HHI(i,0) $ (lil) 

150 CONTlNUt 
IF(N - 1) lb«:.lt>l,lt)2 

151 AH2(l»l)^ivl>l)«Pl(l»l) 
bO TO lb3 

15«; uu lb1« X = l»u 
00 ibb j-l»u 
UO Ibb K=1»H 
AH2(I»J)=Anfc(I.j)-»-Pl(I»K)»Pl(K»J) 

15b CONTlNUt. 
Ibb tONflNUL 
15H CUNTlNUt. 
153 CONTlNUL 

00 IbO ISliN 
00 Ibl J=l#w 
00 lb«; KS1*N 
PHl (1 • I. J i =Hn I (1»I»J) fALPHA {1) «H* A ( i »K) »EAH (K. J) 

16Ü CONTINUE 
PHl(l»IiJ)sPHI(ifI»J)-AH(I»J) 
L2AH (1» J ) =Mh (I r J) -t-M^A (I, J) 

161 CONTlNUL 
160 CONTiNUb 
170 K2=KSTE:p*i 

uO lb5 i=l»U 
UO lb'* K=l»^<: 
CALL öFN(b»M.N»Y»K»T»A) 
00 lob J=l»w 
IF(K *EQ* i) PHI(3»I»l)=PHl(3rI»l)tPHI(l,I,o)«G(J) 
IFtK .tu. «:) PHi(2»l»l)=PHl(2»ll)*t.2AH(If J)*6(j) 

16b CONTlNUL 
PHl(3.I»l)=PtlI(J»l,l)+PHl(2iI.l) 

16«* CONUNUL 
163 CONflNUL 

00 ibb L-i,h 
UO   lb7 K=1»W 
YN ( i ) = YN ( U -h»Al-Ui ( i » K ) «PHI (4. K»1) -ALPHA (1) «tAH (I»K)»Y(1,K) 

167 CONTlNUL 
166 CONTlNUL 

KLTuHN 
LNO 
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NONLlNtAR MUI.T1-2-STEP 

SUBROUTINE i»TEP2(A»N»KSTEP»HiY»UNIT»Pl,AH,AM2,EAH,E2AH.PHI,ALPHA,Y 
SN,lNÜ£X,T,Ii>,HOU)) 
DIMENSION Hl(35,35),AH(i5,3b),»sH2(3b»35),EAH(35,35),E2AH(35,35) 
DIMENSION UNlT(iö,35),Y(<»*3b),A(35,J5),PHI('»,3S,3S),ALPHA(l) 
DIMENSION N(3»3,35,35),AH3(35»35),6(35),YNU),T(1),QHZU,35,35) 
DIMENSION t3AH(35,3b) 
UO 2^0 1 = 1, N 
DO 2*»1 J=1»N 
P1(1»0)=0.0 

2*»1 CONTINUE 
YN(I)-0,0 
PHl(<»»20fI)SO«0 
1F(IS .EU. 1) P1(I,I)=1,0 

2<»0 CONTINUE 
IF(IS  .61.   1)   GO TO  212 

C   ***«   EAH=PAU£(t.XH(AH)) 
C  ••••  E2AH=PADE(EXP(2AHn 

IF(N -1)   206,207,206 
207 EAH(1,1)=EAP(AH(1,1)) 

E2AH(l,l)=EAH(l,l)*EAH(lfl) 
60 TO 212 

206 CALL PADE(A,H,EAH,N) 
H2=HfH 
CALL PADE(A,N2,E2AH,N) 

212 CONTINUE 
IF (INDEX  ,*!•   0)   60  TO 260 

C  *«** PREDICTOR 
IF(H-HOLU)   261,<>S0,251 

250 IF (IS  .6T.   1)   GO TO 23«» 
251 CONTINUE 

C **** AH2(I»J) = (AH) INVERSE SQUARE 
IF(N - 1) 202*201,202 

201 AH2(1,1)=1./AH(1,1)««2 
60 TO 206 

202 CALL lNveRT(AH,N,Pl} 
DO 203 1=1,N 
DO 20*» J=1.N 
DO 205 K=1»N 
AH2(I,J)=AH2(I,J)-fPl(I,iC)*Pl(K,J) 

205 CONTINUE 
204  CONUNUb 
203 CONTINUE 
206 CONTINUE 

C *•** EAH=PAuE(tXP(AH)) 
C »♦♦* COMPUTE PHI(2,0), (2,1) 

DO 213 1=1,N 
DO 2l<* J=1'N 
Pl(IiJ)=ALPnA(l)*E2AH(I,J)4ALPHA(2)*EAH(I,J)^UNjT(I,J) 

214 CONTINUE 
213 CONTINUE 

UO 215 1=1,N 
DO 216 J=1,N 
DO 217 K=1»N 
PHl(l»I.J)=PhI(l,I»J)+ALPHA(l)»AH(I,K)*E2AH K,J) 



82 

PHI(2>I*J)=PHI(2»X»J)*ALPHA(2)*AH(I,K)*EAH(K,J) 
217 CONTINUE. 
21b CONTINUE 
21b CONTINUE 

ÜO 216 I=1»N 
00 219 J=lfN 
PHl<lfI.ü)=PMl(i.I.J)-Pl(I»j)-AHCI»J) 
PHl;2»I.J)=PHlU»I»J)-»-Pl(I.j)-»-2.*AH(I,J) 

219 CONTINUE 
P1(1*I)=0.0 

216 CONTINUE 
29H CONTINUE 

UO 220 K=1»KSTEP 
CALL GFN(6.h»N»y»K»T»A) 
00 221 I=1»N 
00 222 J=1»N 
YN(I)=YN(1)+PHHK.I»J)»Ü(J)*H 

222 CONTINUE 
221 CONTINUE 
220 CONTINUE. 

00 230 I=1»N 
00 231 U=1»N 
Pl(liI)=Pia*I)+AH2(If J)*YN(J) 

291 CONTINUE 
290 CONTINUE 

00 232 I=1»N 
00 239 J-itU 
PHl(^»20»I»=PHI(i*,20»I)-ALPHA(2)*EAH(I.J)*Y(2»J)-ALPHA(l)*E2AH(I,J 

•)*Y(1»J) 
299 CONTINUE 

YN(I)=P](1»I)>PHI(<»»20>I) 
292 CONTINUE 

KETURN 
C «•** CORRECTOR 

260 CONTINUE 
IFUS  ,GT,   1)   60 YO 26«» 
IF(N -1)   2o2.26l»2b2 

261 AH2(l»i)=Ari(l.l)*AH(l»l) 
AH9(l»l)=l./(AH2(lfl)«AH(l»l)) 
GO TO 2bJ 

262 00 264 1=1»N 
00 265 J=1>N 
00 26b K=1'N 
AH2(I»J)=AH2(I»J)*AH(I»K)«AH(K»J) 

266 CONTINUE 
265 CONTINUE 
26i* CONTINUE 

00 267 1=1.N 
00 266 J=1»N 
00 269 K=1»N 
E9AH(I*J)=b9AH(l»J)4AH2(I*K)«AH(K*U) 

269 CONTINUE 
266 CONTINUE 
267 CONTINUE 

CALL INVERT(E9AH»N*AH9) 
269 CONTINUE 
264 IF(IS .61. 1) 60 YO 279 

C **** COMPUTE Phl(2»0)* (2*1) %   (2*2) 
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00 270 ISIfN 
00 271 J=1»N 
W(l»l'I*J)=UNlT(I»J)-l*b«AH(I*J)4AH2(I»J) 
M(l.2»IfJ)=UNIT(I»J)-0.b*AH(IfJ) 
W(l,3»I»J)=ONlT(I.J)+0.b»AH{I,J) 
*(2.1»I»J)=-2,*IUNIT(I»J)»AH(I»J)) 

W{2,2»I.J)=-2.«ÜN1T(I»J)+AH2(I»J) 
W(2.3»I.J)=-2.»IUNIT(I»J)*AH(I»J)) 

W(3i2rI»J)=N(lr9»I»J) 
W(3,3»I.J)=UNIT(I»J.+l.&»AHlI,J)*AH2(I»J) 

271 COMTlf'UE 
270 CONTINUE 

00 263 K=l»3 
00 272 I=X»N 
00 273 J=1»N 
OC ZT*  L=1»N 
Qi IiK»I.J)=«Hl(K»I»J)*ALPHA(l)*W(K»l»I»L)*E2AH(L»J)*ALPHA(2)»l«(K.2 

Sil»L)*EAH(i»J) 
274 CONTINUE 

QHl(K»I,J)sbHl(K»I*J)+W(K»3,IfJ) 
273 CONTINUE 
272 CONTINUE 
263 CONTINUE 

00 275 LSI*9 
00 276 1=1»N 
00 277 J=1.N 
00 276 K=1»N 
PHl(L»I»J)=PHl(L>I»J)-AH3(I,K)«QHI(l.rKfJ) 

278 CONTINUE 
277 CONTINUE 
27b CONTINUE 
27b CONTINUE 
279 CONTINUE 

00 260 K=l»i 
CALL 6FMü»h,N»Y»K»T»A) 
00 261 1=1»N 
00 262 J=1*N 
YN(1)=YN(I)*H*PMI(K»I.J)*6(J) 
1F(K .EQ. 3) YN(I)=VN(I)-ALPHA(l)*E2AH(I»J)»Y(l»J)-ALPHA(2)*EAH(I, 

»J)*Y(2»J) 
262 CONTINUE 
261 CONTINUE 
260 CONTINUE 

END 
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NONLINEAR MULTl-9-STEP 

SUBROUTINE STEPd(A»N»KSTEPtH«YrUNIT»AH'AH2,AH9»AH<t,F;AH»E2AH,E9AH»P 
»MI »QHlrAuPMA,YN» INDEX»T,IS»HOLO) 
DIMENSION AM(35.i5). AH2(35» J5) »AHSOS»35) »AH^OS'SS) 
DIMENSION UNlT(35,35),EAH(3b,35)»E2AH(35»35)»E3AH(35»35) 
DIMENSION A(.j5,3t»).Y(H 35)»PHl('».3bi35),aHI(«*.35»3b) 
DIMENSION N(<t><t»3S»35) »G(35) ,ALPHA(1),YNCl) »T(l) 
KUP=KSTEP 
IFilNDEX .tQ. 1) KUP=KSTEP*1 
DO 320 i=l»N 
yN(I)=0.0 

320 CONTINUE 
IF(H-HOLD) 3m»3<»o»3m 

3<»0  IF(IS  .OT*  I)  60 TO 321 
9<a   CONTINUE 

IF(N -1)   302>301>302 
901  EAH(1»1)=EAH(A(1»1)*H) 

E2AH(l»l)=cAH(l»l)*EAH(l»l) 
E3AH(ia)=t.2AH(l»l)*EAH(l(l) 
AH2(l»l)=Ah(l>l)«Ah(l»l) 
IF(INDEX .LU. 1) 60 TO 350 
AH3(1»1)=1./(AH2(1»1)*AH(1»1)) 
60 TO 303 

302 CONTINUE 
DO 330 1 = 1.u 
DO 331 J=I»N 
DO 332 K=I»N 
AH2(I*J)=AH2(I»J)^AH(I»K)«Ah(K>J) 

332 CONTINUE 
331 CONTINUE 
330 CONTINUE 

DO 333 1=1 »N 
DO 334 J=l »N 
DO 335 K=1»N 
EAH(I#J)=tMh(I.J)+AH2(I»K)»AH{K»J) 

335 CONTINUE 
334 CONTINUE 
333 CONTINUE 

IF(INDEX .LU. 1) 60 TO 351 
CALL INVEKT(LAH,N.AH3) 
CALL PAOMA.MfEAH.N) 
H2=H*H 
CALL PADE(A>H2»E2AH»N) 
H3=H2*H 
CALL PADE(A>H3»E3AH»N) 

303 CONTINUE 
DO 304 1=1»N 
DO 305 J=1»N 
M(1.1»I*J)=UNIT(I*J)-1.5*AH(I*J)^AH2(I*J) 
W(li2»I»J)=0NlT(I»J)-0.b«AH(I*J) 
i»(l.3.I.J)=ONIT(l.JJ*0.b»AH(I,J) 
*(l.U.I,J)=UNIT(I.J)*l.b«AH(I,J)*AH2(I.J) 
W(2«l»I>J)=-2.*(UNIT(I>J)»Ah(I»J)) 
N(2.2>I*J)=-<:.*UNIT(I»J)^AH^(I»J) 
M(2.3*IfJ)=-2.*(UNIT(I»J)-fAH(I»J)) 



85 

M(2.<Ol»J)=-<:.«UNlT(I*J)-<».*AH(I»J)-3.*AH2(IfJ) 
W(3.1'I»J)=UNlTU»J)-0.b*AH(I,J) 
W(3.2.1.J)=LNlTlI,J)*0.b«AH(I,U) 

N(3.<4*I,J)=UNIT(1»J)+2.*>*AH(I,J)+3.*AH2(I*J} 
30& CONTINUE 
30'* CONTlNUt 
360 00 306 Ii=ifKUP 

DO 307 ISitH 
Ü0  306 JSlfN 
DO 309 K=1»INI 

«Hl<Ii I»J)=QHI(II,l,J)*ALPHA(l)»W(na.I.K)*E3AH(K»J)+ALPHA(2)*W( 
ill»2»l.K)*t.4iAH(K,J)+ALPHA(3)«W(II.3»I,K)»EAh(K»j) 

309 CONTINUE 
OHl(II»I»J)=QHI(II,X,J)+W(Il«<t»I»J) 

306 CONTINUE 
307 CONTlNUt 
306 CONTlNUt 

DO 310 K=i»KUP 
DO 311 I=1»N 
UO 312 J=1>N 
DO 313 L-ltN 
IF(INDEX.EMI.O) Pia,K»I.J)=PHI(K,I#J)-AH3(I»L)*QHl(K,L,J) 
IF< INDEX.Ew.l) PHl'<»l»J)=PHI(K,l»J)-AHi»(I»L)*OHl(K,L,J) 

313 CONTINUE 
312 CONTINUE 
311 CONTINUE 
310 CONTINUE 
321 CONTINUE 

UO 314* K=1.KUP 
CALL <iFN<ü»M.N,Y»K»T»A) 
DO 3lb I=1»N 
DO 316 J=1»N 
YN(I)=YN(n+H*PHI(K»I»J)»e(j) 
IF(K .EO. KUP) YN(I)=YN(I)-ALPHA(3)*EAH(I»J)*Y{3»J)-ALPHA(2)»E2AH( 

SI.J)*Y(2>J)-ALPHA(1)*E3AH(I»J)«Y(1»J) 
316 CONTINUE 
31b CONTINUE 
314 CONTINUE 

RETURN 
350 AH3(1»1)=AH2(1>1)*AH(1»1) 

AH<*(l>l)=1.0/(AH3(l*l)*AHa*l)) 
60 TO 357 

351 DO 352 1 = 1. ^ 
DO 353 J=1»N 
AH3(I»J)=EAh(I»J) 
EAH(I»J)=0.0 

353 CONTINUE 
352 CONTINUE 

DO 354 1=1.N 
DO 355 J=1.N 
DO 356 K=1.N 
EAH(I»J)=tAH(I,J)+AH3(I,K)*AH(K»J) 

35b CONTINUE 
355 CONTlNUt 
354 CONTINUE 

CALL INVERT(EAH.N.AHH) 
CALL PAütCM.H.EAH.N) 
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H2=H*H 
CALL PAUE:( 
H3=H2*H 
CALL HADU 

357 CONTINUE 
UO 358 1=1 
UO 359 J=l 

A»H2»L2AHrN) 

A,H3,L3Ah»N) 

Mdtl'IiO) 
*(1.2»I.J) 
N(1.3»I»J) 
N(1»<*>I»J) 

W(2,2rl.d) 
IN(2*3»!»J) 
ii«(2,«+»I,J) 
M(3»l»IiO) 
w(3,2»l,J) 
N(3.3»I.J) 
M(3.<*>I»J) 
«r(H,l»i,J) 
W(^.2»I»J) 
M(H»3»I»J) 
W(U,U.I,J) 

359 CONTINUE. 
356 CONTINUE 

GO TO 360 
END 

tH 
=-0.l»UNlT< 
=-0.l*UNIT( 
=-0.1*UNIT( 
=-0.1»UNlT( 
=0.3«UNIT{I 
=0.3*UNIT(I 
=0.3*UNIT(I 
=0,3*UN1T(I 
=-0.3*UNiT( 
=-0.3*UNlT( 
=-0.3*UNlT( 
=-0.3*UNlT( 
=0.1*{ÜN1T( 
=0.1*UIMIT(I 
=0.1*(UN1T( 
=0.UUNIT(I 

IfJ)4-l.l*AH( 
I.J)*AH(I»J) 
I.J)*0.9*AH( 
I»J)*0.8»AH( 
.J)-2.3*AH(I 
.J)-2.*AH(I» 
,J)-l.7*AH(I 
,J)-m*AH(I 
I.J)*l.3*AH( 
I»J)*AH(I»J) 
I»J)*0.7*AH( 
1IJ)*0.«**AH( 

I»J)-Ah(I»J) 
.J)-AH2(I,J) 
I»J)*AH(I»J) 
»J)+0.2*AH(I 

I.J)-23.*AH2(I,J)/15.+AH3(I»J? 
-29.«AH2(I'J)/60. 
I»J)*7.*ÄH2(I»J)/15, 
I»J)*79.»AH2(I»J)/60.*.9«AH3(1.J) 
»J)*2a«AH2(I.j) 
J)-0i05«AH2(I»j)+AH3(I.J) 
»J)-1.9*AH2(I.J) 
.J)-3.'*5*AH2(I.J)-2.7*AH3(I.J) 
I»J)-0.6*AH2(I»J) 
♦.55*AH2(I»J) 
I»J)*1.«**AH2{I.J)*AH3(I»J) 
I»J)+1.95*AH2(1»J)*2.7»AH3(I»J) 
)*AH2(I»J)/30. 
/60. 
)*AH2(I»J)/30. 
»J)*ll.*AH2(I»j)/60.+0.1*AH3(I»J) 
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LISTS OF SYMBOLS AND DEFINITIONS 

Indices 

i, j , K , i , m , n , N , p , q , «/ 

Scalars 

6. E, k,  K#. L, L*. L#.   Q#, 5 

a,a,/J,y,»(h),«,f,f,tft«,l,ff,*,r,A 

Vectors 

O, f . g.G.W.X.y, y', y*. Z,4,,*, eg 

Matrices 

A. C(h),E,H,K.Q.e. ^(Ah) 

Symbols 

! factorial 

C belongs to 

1     1 absolute value 

norm 

» much greater than 

3 there exists 

? such that 

V for every 

n product 

^ summation 

LHS.RHS        left-hand side, right-hand side 
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LMS Linear Multistep 

NLMS Nonlinear Multistep 

t time variable 

t' integration variable 

h step sizr 

h^T step size of method N 
N 

f roots of characteristic polynomial 

p^T method N of order p 
N 

y initial vector 
'o 

y ,a i f values of y, a, ff evaluated at t 'n «»n ¥n 7 »w ■ n 

9^' j-th derivative of g 

p (T) a polynomial in T 

(Y class of polynomials of degree p 

G(y) a function of y 

X. (Ah) an integral 

^ 
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' a function of 1^ (Ah) 
i 1 

uit) M.O. C. (modulus of continuity) 

X(A) eigenvalues of A 

p(A) spectral radius of A 

p(f)» p(i)» 0(^.0 characteristic polynomials 

O (hP+2) order of hP+ 

C functions which have (p+l)-th continuous derivative 

C    , error function 
p+1 
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OL [y W] true operator 

eL. NIX^ ' *3 nonlinear operator 

T[y(t);H] local discretization error 

1 

I 
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